Please wait a minute...

Frontiers of Computer Science

Front. Comput. Sci.    2018, Vol. 12 Issue (5) : 840-857     https://doi.org/10.1007/s11704-018-7195-8
RESEARCH ARTICLE |
Learning deep representations for semantic image parsing: a comprehensive overview
Lili HUANG, Jiefeng PENG, Ruimao ZHANG, Guanbin LI, Liang LIN()
School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
Download: PDF(1089 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Semantic image parsing, which refers to the process of decomposing images into semantic regions and constructing the structure representation of the input, has recently aroused widespread interest in the field of computer vision. The recent application of deep representation learning has driven this field into a new stage of development. In this paper, we summarize three aspects of the progress of research on semantic image parsing, i.e., category-level semantic segmentation, instance-level semantic segmentation, and beyond segmentation. Specifically, we first review the general frameworks for each task and introduce the relevant variants. The advantages and limitations of each method are also discussed. Moreover, we present a comprehensive comparison of different benchmark datasets and evaluation metrics. Finally, we explore the future trends and challenges of semantic image parsing.

Keywords semantic image segmentation      deep learning      convolutional neural networks      image parsing     
Corresponding Authors: Liang LIN   
Online First Date: 04 September 2018    Issue Date: 21 September 2018
 Cite this article:   
Lili HUANG,Jiefeng PENG,Ruimao ZHANG, et al. Learning deep representations for semantic image parsing: a comprehensive overview[J]. Front. Comput. Sci., 2018, 12(5): 840-857.
 URL:  
http://journal.hep.com.cn/fcs/EN/10.1007/s11704-018-7195-8
http://journal.hep.com.cn/fcs/EN/Y2018/V12/I5/840
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lili HUANG
Jiefeng PENG
Ruimao ZHANG
Guanbin LI
Liang LIN
1 Zhao H S, Shi J P, Qi X J, Wang X G, Jia J Y. Pyramid scene parsing network. In: Proceedings of International Conference on Computer Vision and Pattern Recognition. 2017, 2881–2890
https://doi.org/10.1109/CVPR.2017.660
2 He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of IEEE International Conference on Computation Vision. 2017, 2980–2988
https://doi.org/10.1109/ICCV.2017.322
3 Tu Z, Chen X, Yuille A L, Zhu S C. Image parsing: unifying segmentation, detection, and recognition. International Journal of Computer Vision, 2005, 63(2): 113–140
https://doi.org/10.1007/s11263-005-6642-x
4 Tu Z, Zhu S C. Parsing images into region and curve processes. In: Proceedings of European Conference on Computer Vision. 2002, 393–407
https://doi.org/10.1007/3-540-47977-5_26
5 Han F, Zhu S C. Bottom-up/top-down image parsing with attribute grammar. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(1): 59–73
https://doi.org/10.1109/TPAMI.2008.65
6 Lin L, Wang G, Zhang R, Zhang R, Liang X, Zuo W. Deep structured scene parsing by learning with image descriptions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 2276–2284
https://doi.org/10.1109/CVPR.2016.250
7 Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
8 Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 886–893
https://doi.org/10.1109/CVPR.2005.177
9 Ahonen T, Hadid A, Pietikäinen M. Face recognition with local binary patterns. In: Proceedings of European Conference on Computer Vision. 2004, 469–481
https://doi.org/10.1007/978-3-540-24670-1_36
10 Liu Z, Li X, Luo P, Loy C C, Tang X. Semantic image segmentation via deep parsing network. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1377–1385
https://doi.org/10.1109/ICCV.2015.162
11 Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille A L. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848
https://doi.org/10.1109/TPAMI.2017.2699184
12 Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3431–3440
https://doi.org/10.1109/CVPR.2015.7298965
13 Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille A L. Semantic image segmentation with deep convolutional nets and fully connected CRFs. 2014, arXiv preprint arXiv:1412.7062
14 Peng C, Zhang X, Yu G, Luo G, Sun J. Large kernel matters-improve semantic segmentation by global convolutional network. 2017, arXiv preprint arXiv:1703.02719
15 Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems. 2012, 1097–1105
16 Socher R, Manning C D, Ng A Y. Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: Proceedings of NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop. 2010, 1–9
17 Li Y, Qi H, Dai J, Ji X, Wei Y. Fully convolutional instance-aware semantic segmentation. 2016, arXiv preprint arXiv:1611.07709
18 Bengio Y. Deep learning of representations: looking forward. In: Proceedings of International Conference on Statistical Language and Speech Processing. 2013, 1–37
https://doi.org/10.1007/978-3-642-39593-2_1
19 Bengio Y. Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning. 2012, 17–36
20 Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2013, 35(8): 1798–1828
21 LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, Jackel L D. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541–551
https://doi.org/10.1162/neco.1989.1.4.541
22 Dai J, He K, Li Y, Ren S, Sun J. Instance-sensitive fully convolutional networks. In: Proceedings of European Conference on Computer Vision. 2016, 534–549
https://doi.org/10.1007/978-3-319-46466-4_32
23 Islam M A, Naha S, Rochan M, Bruce N, Wang Y. Label refinement network for coarse-to-fine semantic segmentation. 2017, arXiv preprint arXiv:1703.00551
24 Lipton Z C, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning. 2015, arXiv preprint arXiv:1506.00019
25 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436–444
https://doi.org/10.1038/nature14539
26 Liang X, Shen X, Xiang D, Feng J, Lin L, Yan S. Semantic object parsing with local-global long short-term memory. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 3185–3193
https://doi.org/10.1109/CVPR.2016.347
27 Karpathy A, Li F F. Deep visual-semantic alignments for generating image descriptions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3128–3137
https://doi.org/10.1109/CVPR.2015.7298932
28 Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. In: Proceedings of Advances in Neural Information Processing Systems. 2014, 3104–3112
29 Li Z, Gan Y, Liang X, Yu Y, Cheng H, Lin L. LSTM-CF: unifying context modeling and fusion with LSTMS for RGB-D scene labeling. In: Proceedings of European Conference on Computer Vision. 2016, 541–557
https://doi.org/10.1007/978-3-319-46475-6_34
30 Peng Z, Zhang R, Liang X, Liu X, Lin L. Geometric scene parsing with hierarchical LSTM. 2016, arXiv preprint arXiv:1604.01931
31 Byeon W, Breuel T M, Raue F, Liwicki M. Scene labeling with LSTM recurrent neural networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3547–3555
https://doi.org/10.1109/CVPR.2015.7298977
32 Liang X, Shen X, Feng J, Lin L, Yan S. Semantic object parsing with graph LSTM. In: Proceedings of European Conference on Computer Vision. 2016, 125–143
https://doi.org/10.1007/978-3-319-46448-0_8
33 Liang X, Lin L, Shen X, Feng J, Yan S, Xing E P. Interpretable structure-evolving LSTM. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 2175–2184
https://doi.org/10.1109/CVPR.2017.234
34 Zhang R, Yang W, Peng Z, Wang X, Lin L. Progressively diffused networks for semantic image segmentation. 2017, arXiv preprint arXiv:1702.05839
35 Elman J L. Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 1991, 7(2-3): 195–225
https://doi.org/10.1007/BF00114844
36 Liu W, Rabinovich A, Berg A C. Parsenet: looking wider to see better. 2015, arXiv preprint arXiv:1506.04579
37 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 1–9
https://doi.org/10.1109/CVPR.2015.7298594
38 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770–778
https://doi.org/10.1109/CVPR.2016.90
39 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014, arXiv preprint arXiv:1409.1556
40 Pinheiro P H O, Collobert R. Recurrent convolutional neural networks for scene labeling. In: Proceedings of International Conference on Machine Learning. 2014, 82–90
41 Graves A, Fernández S, Schmidhuber J. Multi-dimensional recurrent neural networks. In: Proceedings of the International Conference on Artificial Neural Networks. 2007, 549–558
https://doi.org/10.1007/978-3-540-74690-4_56
42 Lin L, Huang L, Chen T, Gan Y, Cheng H. Knowledge-guided recurrent neural network learning for task-oriented action prediction. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2017, 625–630
https://doi.org/10.1109/ICME.2017.8019345
43 Farabet C, Couprie C, Najman L, LeCun Y. Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915–1929
https://doi.org/10.1109/TPAMI.2012.231
44 Gupta S, Girshick R, Arbeláez P, Malik J. Learning rich features from RGB-D images for object detection and segmentation. In: Proceedings of European Conference on Computer Vision. 2014, 345–360
https://doi.org/10.1007/978-3-319-10584-0_23
45 Ning F, Delhomme D, LeCun Y, Piano F, Bottou L, Barbano P E. Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing, 2005, 14(9): 1360–1371
https://doi.org/10.1109/TIP.2005.852470
46 Liang X, Liu S, Shen X, Yang J, Liu L, Dong J, Lin L, Yan S. Deep human parsing with active template regression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(12): 2402–2414
https://doi.org/10.1109/TPAMI.2015.2408360
47 Liang X, Xu C, Shen X, Yang J, Liu S, Tang J, Lin L, Yan S. Human parsing with contextualized convolutional neural network. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1386–1394
https://doi.org/10.1109/ICCV.2015.163
48 Krähenbühl P, Koltun V. Efficientcient inference in fully connected CRFS with gaussian edge potentials. In: Proceedings of Advances in Neural Information Processing Systems. 2011, 109–117
49 Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1520–1528
https://doi.org/10.1109/ICCV.2015.178
50 Badrinarayanan V, Handa A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. 2015, arXiv preprint arXiv:1505.07293
51 Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015, 234–241
https://doi.org/10.1007/978-3-319-24574-4_28
52 Lin G, Milan A, Shen C, Reid I. Refinenet: multi-path refinement networks with identity mappings for high-resolution semantic segmentation. 2016, arXiv preprint arXiv:1611.06612
53 Chen L C, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation. 2017, arXiv preprint arXiv:1706.05587
54 Yu F, Koltun V.Multi-scale context aggregation by dilated convolutions. 2015, arXiv preprint arXiv:1511.07122
55 Li X, Liu Z, Luo P, Loy C C, Tang X. Not all pixels are equal: difficulty-aware semantic segmentation via deep layer cascade. 2017, arXiv preprint arXiv:1704.01344
56 Zhou Y, Xie L, Shen W, Wang Y, Fishman E K, Yuille A L. A fixedpoint model for pancreas segmentation in abdominal ct scans. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. 2017, 693–701
57 Li Q, Wang J, Wipf D, Tu Z. Fixed-point model for structured labeling. In: Proceedings of International Conference on Machine Learning. 2013, 214–221
58 Wang G, Luo P, Lin L, Wang X. Learning object interactions and descriptions for semantic image segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 5859–5867
https://doi.org/10.1109/CVPR.2017.556
59 Luo P, Wang G, Lin L, Wang X. Deep dual learning for semantic image segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 2718–2726
https://doi.org/10.1109/ICCV.2017.296
60 Schwing A G, Urtasun R. Fully connected deep structured networks. 2015, arXiv preprint arXiv:1503.02351
61 Yang W, Luo P, Lin L. Clothing co-parsing by joint image segmentation and labeling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 3182–3189
https://doi.org/10.1109/CVPR.2014.407
62 Byeon W, Liwicki M, Breuel T M. Texture classification using 2D LSTM networks. In: Proceedings of International Conference on Pattern Recognition. 2014, 1144–1149
https://doi.org/10.1109/ICPR.2014.206
63 Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 2650–2658
https://doi.org/10.1109/ICCV.2015.304
64 Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 580–587
https://doi.org/10.1109/CVPR.2014.81
65 Reza M, Kosecka J. Reinforcement learning for semantic segmentation in indoor scenes. 2016, arXiv preprint arXiv:1606.01178
66 Van Oord A, Kalchbrenner N, Kavukcuoglu K. Pixel recurrent neural networks. In: Proceedings of International Conference on Machine Learning. 2016, 1747–1756
67 Kalchbrenner N, Danihelka I, Graves A. Grid long short-term memory. 2015, arXiv preprint arXiv:1507.01526
68 Hariharan B, Arbeláez P, Girshick R, Malik J. Simultaneous detection and segmentation. In: Proceedings of European Conference on Computer Vision. 2014, 297–312
https://doi.org/10.1007/978-3-319-10584-0_20
69 Liang X, Wei Y, Shen X, Jie Z, Feng J, Lin L, Yan S. Reversible recursive instance-level object segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 633–641
https://doi.org/10.1109/CVPR.2016.75
70 Liang X, Wei Y, Shen X, Yang J, Lin L, Yan S. Proposal-free network for instance-level object segmentation. 2015, arXiv preprint arXiv:1509.02636
71 Abtahi F, Zhu Z, Burry A M. A deep reinforcement learning approach to character segmentation of license plate images. In: Proceedings of International Conference on Machine Vision Applications. 2015, 539–542
https://doi.org/10.1109/MVA.2015.7153249
72 Lin L, Wang K, Zuo W, Wang M, Luo J, Zhang L. A deep structured model with radius–margin bound for 3D human activity recognition. International Journal of Computer Vision, 2016, 118(2): 256–273
https://doi.org/10.1007/s11263-015-0876-z
73 Hariharan B, Arbeláez P, Girshick R, Malik J. Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 447–456
https://doi.org/10.1109/CVPR.2015.7298642
74 Chen Y T, Liu X, Yang M H. Multi-instance object segmentation with occlusion handling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3470–3478
https://doi.org/10.1109/CVPR.2015.7298969
75 Arbeláez P, Pont-Tuset J, Barron J T, Marques F, Malik J. Multiscale combinatorial grouping. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 328–335
https://doi.org/10.1109/CVPR.2014.49
76 Li G, Xie Y, Lin L, Yu Y. Instance-level salient object segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 247–256
https://doi.org/10.1109/CVPR.2017.34
77 Dai J, He K, Sun J. Instance-aware semantic segmentation via multitask network cascades. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 3150–3158
78 Girshick R. Fast R-CNN. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1440–1448
https://doi.org/10.1109/ICCV.2015.169
79 He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Proceedings of European Conference on Computer Vision. 2014, 346–361
https://doi.org/10.1007/978-3-319-10578-9_23
80 Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of Advances in Neural Information Processing Systems. 2015, 91–99
81 Newell A, Huang Z, Deng J. Associative embedding: end-to-end learning for joint detection and grouping. In: Proceedings of Advances in Neural Information Processing Systems. 2017, 2274–2284
82 Harley A W, Derpanis K G, Kokkinos I. Learning dense convolutional embeddings for semantic segmentation. 2015, arXiv preprint arXiv:1511.04377
83 Fathi A, Wojna Z, Rathod V, Wang P, Song H O, Guadarrama S, Murphy K P. Semantic instance segmentation via deep metric learning. 2017, arXiv preprint arXiv:1703.10277
84 Yang L, Jin R. Distance metric learning: a comprehensive survey. Michigan State Universiy, 2006, 2(2): 1–51
85 Xu J, Schwing A G, Urtasun R. Tell me what you see and I will show you where it is. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 3190–3197
https://doi.org/10.1109/CVPR.2014.408
86 Miller G A, Beckwith R, Fellbaum C, Gross D, Miller K J. Introduction to wordnet: an on-line lexical database. International Journal of Lexicography, 1990, 3(4): 235–244
https://doi.org/10.1093/ijl/3.4.235
87 Socher R, Bauer J, Manning C D, Ng A Y. Parsing with compositional vector grammars. In: Proceedings of Annual Meeting of the Association for Computational Linguistics. 2013, 455–465
88 Everingham M, Van Gool L,Williams C K, Winn J, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303–338
https://doi.org/10.1007/s11263-009-0275-4
89 Chen X, Mottaghi R, Liu X, Fidler S, Urtasun R, Yuille A L. Detect what you can: detecting and representing objects using holistic models and body parts. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1971–1978
https://doi.org/10.1109/CVPR.2014.254
90 Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3): 211–252
https://doi.org/10.1007/s11263-015-0816-y
91 Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Semantic understanding of scenes through the ADE20K dataset. 2016, arXiv preprint arXiv:1608.05442
92 Lin T Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick C L, Dollár P. Microsoft COCO: common objects in context. 2014, arXiv preprint arXiv:1405.0312
93 Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick C L. Microsoft COCO: common objects in context. In: Proceedings of European Conference on Computer Vision. 2014, 740–755
https://doi.org/10.1007/978-3-319-10602-1_48
94 Liu C, Yuen J, Torralba A. Nonparametric scene parsing: label transfer via dense scene alignment. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1972–1979
https://doi.org/10.1109/CVPR.2009.5206536
95 Silberman N, Hoiem D, Kohli P, Fergus R. Indoor segmentation and support inference from RGBD images. In: Proceedings of European Conference on Computer Vision. 2012, 746–760
https://doi.org/10.1007/978-3-642-33715-4_54
96 Gupta S, Arbelaez P, Malik J. Perceptual organization and recognition of indoor scenes from RGB-D images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 564–571
https://doi.org/10.1109/CVPR.2013.79
97 Song S, Lichtenberg S P, Xiao J. Sun RGB-D: a RGB-D scene understanding benchmark suite. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 567–576
https://doi.org/10.1109/CVPR.2015.7298655
98 Janoch A, Karayev S, Jia Y, Barron J T, Fritz M, Saenko K, Darrell T. A category-level 3D object dataset: putting the kinect to work. Consumer Depth Cameras for Computer Vision. 2013, 141–165
99 Xiao J, Owens A, Torralba A. SUN3D: a database of big spaces reconstructed using SFM and object labels. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 1625–1632
https://doi.org/10.1109/ICCV.2013.458
100 Yamaguchi K, Kiapour M H, Ortiz L E, Berg T L. Parsing clothing in fashion photographs. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 3570–3577
https://doi.org/10.1109/CVPR.2012.6248101
101 Liu S, Feng J, Domokos C, Xu H, Huang J, Hu Z, Yan S. Fashion parsing with weak color-category labels. IEEE Transactions on Multimedia, 2014, 16(1): 253–265
https://doi.org/10.1109/TMM.2013.2285526
102 Dong J, Chen Q, Xia W, Huang Z, Yan S. A deformable mixture parsing model with parselets. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 3408–3415
https://doi.org/10.1109/ICCV.2013.423
103 Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 3213–3223
https://doi.org/10.1109/CVPR.2016.350
Related articles from Frontiers Journals
[1] Xin LIU,Meina KAN,Wanglong WU,Shiguang SHAN,Xilin CHEN. VIPLFaceNet: an open source deep face recognition SDK[J]. Front. Comput. Sci., 2017, 11(2): 208-218.
[2] Feifei ZHANG,Yongbin YU,Qirong MAO,Jianping GOU,Yongzhao ZHAN. Pose-robust feature learning for facial expression recognition[J]. Front. Comput. Sci., 2016, 10(5): 832-844.
[3] Yi ZHENG,Qi LIU,Enhong CHEN,Yong GE,J. Leon ZHAO. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification[J]. Front. Comput. Sci., 2016, 10(1): 96-112.
[4] Wenge RONG,Baolin PENG,Yuanxin OUYANG,Chao LI,Zhang XIONG. Structural information aware deep semi-supervised recurrent neural network for sentiment analysis[J]. Front. Comput. Sci., 2015, 9(2): 171-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed