Please wait a minute...

Frontiers of Computer Science

Front. Comput. Sci.    2018, Vol. 12 Issue (1) : 26-39     https://doi.org/10.1007/s11704-016-6309-5
REVIEW ARTICLE |
Bioimage-based protein subcellular location prediction: a comprehensive review
Ying-Ying XU1,2, Li-Xiu YAO1,2, Hong-Bin SHEN1,2()
1. Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China
2. Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
Download: PDF(643 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Subcellular localization of proteins can provide key hints to infer their functions and structures in cells. With the breakthrough of recent molecule imaging techniques, the usage of 2D bioimages has become increasingly popular in automatically analyzing the protein subcellular location patterns. Compared with the widely used protein 1D amino acid sequence data, the images of protein distribution are more intuitive and interpretable, making the images a better choice at many applications for revealing the dynamic characteristics of proteins, such as detecting protein translocation and quantification of proteins. In this paper, we systematically reviewed the recent progresses in the field of automated image-based protein subcellular location prediction, and classified them into four categories including growing of bioimage databases, description of subcellular location distribution patterns, classification methods, and applications of the prediction systems. Besides, we also discussed some potential directions in this field.

Keywords bioimage informatics      protein subcellular location prediction      global and local features      multi-location protein recognition     
Corresponding Authors: Hong-Bin SHEN   
Just Accepted Date: 16 November 2016   Online First Date: 07 June 2017    Issue Date: 12 January 2018
 Cite this article:   
Ying-Ying XU,Li-Xiu YAO,Hong-Bin SHEN. Bioimage-based protein subcellular location prediction: a comprehensive review[J]. Front. Comput. Sci., 2018, 12(1): 26-39.
 URL:  
http://journal.hep.com.cn/fcs/EN/10.1007/s11704-016-6309-5
http://journal.hep.com.cn/fcs/EN/Y2018/V12/I1/26
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying-Ying XU
Li-Xiu YAO
Hong-Bin SHEN
1 Domon B, Aebersold R. Options and considerations when selecting a quantitative proteomics strategy. Nature Biotechnology, 2010, 28(7): 710–721
https://doi.org/10.1038/nbt.1661
2 Altelaar A F, Munoz J, Heck A J. Next-generation proteomics: towards an integrative view of proteome dynamics. Nature Reviews Genetics, 2013, 14(1): 35–48
https://doi.org/10.1038/nrg3356
3 Tyers M, Mann M. From genomics to proteomics. Nature, 2003, 422(6928): 193–197
https://doi.org/10.1038/nature01510
4 Casci T. Bioinformatics: Next-generation omics. Nature Reviews Genetics, 2012, 13(6): 378–379
https://doi.org/10.1038/nrg3250
5 Kanehisa M, Bork P. Bioinformatics in the post-sequence era. Nature Genetics, 2003, 33: 305–310
https://doi.org/10.1038/ng1109
6 Levine A G. An explosion of bioinformatics careers. Science, 2014, 344(6189): 1303–1306
https://doi.org/10.1126/science.344.6189.1303
7 Eliceiri K W, Berthold M R, Goldberg I G, Ibáñez L, Manjunath B S, Martone M E, Murphy R F, Peng H, Plant A L, Roysam B. Biological imaging software tools. Nature Methods, 2012, 9(7): 697–710
https://doi.org/10.1038/nmeth.2084
8 Murphy R F. A new era in bioimage informatics. Bioinformatics, 2014, 30(10): 1353–1353
https://doi.org/10.1093/bioinformatics/btu158
9 Peng H. Bioimage informatics: a new area of engineering biology. Bioinformatics, 2008, 24(17): 1827–1836
https://doi.org/10.1093/bioinformatics/btn346
10 Chou K-C. Some remarks on predicting multi-label attributes in molecular biosystems. Molecular Biosystems, 2013, 9(6): 1092–1100
https://doi.org/10.1039/c3mb25555g
11 Hung M-C, Link W. Protein localization in disease and therapy. Journal of Cell Science, 2011, 124(20): 3381–3392
https://doi.org/10.1242/jcs.089110
12 Komor A C, Schneider C J, Weidmann A G, Barton J K. Cell-selective biological activity of rhodium metalloinsertors correlates with subcellular localization. Journal of the American Chemical Society, 2012, 134(46): 19223–19233
https://doi.org/10.1021/ja3090687
13 Lee K, Byun K, Hong W, Chuang H-Y, Pack C-G, Bayarsaikhan E, Paek S H, Kim H, Shin H Y, Ideker T. Proteome-wide discovery of mislocated proteins in cancer. Genome Research, 2013, 23(8): 1283–1294
https://doi.org/10.1101/gr.155499.113
14 Liu Z, Hu J. Mislocalization-related disease gene discovery using gene expression based computational protein localization prediction. Methods, 2016, 93: 119–127
https://doi.org/10.1016/j.ymeth.2015.09.022
15 Lo P-K, Lee J S, Chen H, Reisman D, Berger F G, Sukumar S. Cytoplasmic mislocalization of overexpressed FOXF1 is associated with the malignancy and metastasis of colorectal adenocarcinomas. Experimental and Molecular Pathology, 2013, 94(1): 262–269
https://doi.org/10.1016/j.yexmp.2012.10.014
16 Hu M C-T, Lee D-F, Xia W, Golfman L S, Ou-Yang F, Yang J-Y, Zou Y, Bao S, Hanada N, Saso H. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell, 2004, 117(2): 225–237
https://doi.org/10.1016/S0092-8674(04)00302-2
17 Briesemeister S, Rahnenführer J, Kohlbacher O. Going from where to why—interpretable prediction of protein subcellular localization. Bioinformatics, 2010, 26(9): 1232–1238
https://doi.org/10.1093/bioinformatics/btq115
18 Chou K-C, Shen H-B. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2008, 3(2): 153–162
https://doi.org/10.1038/nprot.2007.494
19 Imai K, Nakai K. Prediction of subcellular locations of proteins: where to proceed? Proteomics, 2010, 10(22): 3970–3983
https://doi.org/10.1002/pmic.201000274
20 Shen H B, Chou K C. Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Engineering, Design and Selection, 2007, 20(11): 561–567
https://doi.org/10.1093/protein/gzm057
21 Chou K-C, Shen H-B. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One, 2010, 5(4): e9931
https://doi.org/10.1371/journal.pone.0009931
22 Su E, Chiu H-S, Lo A, Hwang J-K, Sung T-Y, Hsu W-L.Protein subcellular localization prediction based on compartment-specific features and structure conservation. BMC Bioinformatics, 2007, 8(1): 1
https://doi.org/10.1186/1471-2105-8-330
23 Hawkins J, Bodén M. Detecting and sorting targeting peptides with neural networks and support vector machines. Journal of Bioinformatics and Computational Biology, 2006, 4(1): 1–18
https://doi.org/10.1142/S0219720006001771
24 Megason S G, Fraser S E. Imaging in systems biology. Cell, 2007, 130(5): 784–795
https://doi.org/10.1016/j.cell.2007.08.031
25 O’Donoghue S I, Gavin A-C, Gehlenborg N, Goodsell D S, Hériché J-K, Nielsen C B, North C, Olson A J, Procter J B, Shattuck D W. Visualizing biological data—now and in the future. Nature Methods, 2010, 7: S2–S4
https://doi.org/10.1038/nmeth.f.301
26 Kumar A, Rao A, Bhavani S, Newberg J Y, Murphy R F. Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers. Proceedings of the National Academy of Sciences, 2014, 111(51): 18249–18254
https://doi.org/10.1073/pnas.1415120112
27 Xu Y-Y, Yang F, Zhang Y, Shen H-B. Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning. Bioinformatics, 2015, 31(7): 1111–1119
https://doi.org/10.1093/bioinformatics/btu772
28 Peng T, Bonamy G M, Glory-Afshar E, Rines D R, Chanda S K, Murphy R F. Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns. Proceedings of the National Academy of Sciences, 2010, 107(7): 2944–2949
https://doi.org/10.1073/pnas.0912090107
29 Xu Y-Y, Yang F, Zhang Y, Shen H-B. An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues. Bioinformatics, 2013, 29(16): 2032–2040
https://doi.org/10.1093/bioinformatics/btt320
30 Murphy R F. CellOrganizer: image-derived models of subcellular organization and protein distribution. Methods in Cell Biology, 2012, 110: 179
https://doi.org/10.1016/B978-0-12-388403-9.00007-2
31 Murphy R F. Building cell models and simulations from microscope images. Methods, 2015
32 Stadler C, Rexhepaj E, Singan V R, Murphy R F, Pepperkok R, Uhlén M, Simpson J C, Lundberg E. Immunofluorescence and fluorescentprotein tagging show high correlation for protein localization in mammalian cells. Nature Methods, 2013, 10(4): 315–323
https://doi.org/10.1038/nmeth.2377
33 Jagadeesh V, Anderson J, Jones B, Marc R, Fisher S, Manjunath B. Synapse classification and localization in electron micrographs. Pattern Recognition Letters, 2014, 43: 17–24
https://doi.org/10.1016/j.patrec.2013.06.001
34 Conrad C, Erfle H, Warnat P, Daigle N, Lörch T, Ellenberg J, Pepperkok R, Eils R. Automatic identification of subcellular phenotypes on human cell arrays. Genome Research, 2004, 14(6): 1130–1136
https://doi.org/10.1101/gr.2383804
35 Simpson J C, Wellenreuther R, Poustka A, Pepperkok R, Wiemann S. Systematic subcellular localization of novel proteins identified by large- scale cDNA sequencing. EMBO Reports, 2000, 1(3): 287–292
https://doi.org/10.1093/embo-reports/kvd058
36 Knowles D W, Sudar D, Bator-Kelly C, Bissell M J, Lelièvre S A. Automated local bright feature image analysis of nuclear protein distribution identifies changes in tissue phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12): 4445–4450
https://doi.org/10.1073/pnas.0509944102
37 Long F, Peng H, Sudar D, Lelièvre S A, Knowles D W. Phenotype clustering of breast epithelial cells in confocal images based on nuclear protein distribution analysis. BMC Cell Biology, 2007, 8(Suppl 1): S3
https://doi.org/10.1186/1471-2121-8-S1-S3
38 Tahir M, Khan A, Majid A. Protein subcellular localization of fluorescence imagery using spatial and transform domain features. Bioinformatics, 2012, 28(1): 91–97
https://doi.org/10.1093/bioinformatics/btr624
39 Xu Y-Y, Yang F, Shen H-B. Incorporating organelle correlations into semi-supervised learning for protein subcellular localization prediction. Bioinformatics, 2016, 32(14): 2184–2192
https://doi.org/10.1093/bioinformatics/btw219
40 Giepmans B N, Adams S R, Ellisman M H, Tsien R Y. The fluorescent toolbox for assessing protein location and function. Science, 2006, 312(5771): 217–224
https://doi.org/10.1126/science.1124618
41 Gough A, Lezon T, Faeder J R, Chennubhotla C, Murphy R F, Critchley-Thorne R, Taylor D L. High content analysis with cellular and tissue systems biology: a bridge between cancer cell biology and tissue-based diagnostics. The Molecular Basis of Cancer, 2014, 4
42 Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S. Towards a knowledge-based human protein atlas. Nature Biotechnology, 2010, 28(12): 1248–1250
https://doi.org/10.1038/nbt1210-1248
43 Camp R L, Chung G G, Rimm D L. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nature Medicine, 2002, 8(11): 1323–1328
https://doi.org/10.1038/nm791
44 Stephens D J, Allan V J. Light microscopy techniques for live cell imaging. Science, 2003, 300(5616): 82–86
https://doi.org/10.1126/science.1082160
45 Cho B H, Cao-Berg I, Bakal J A, Murphy R F. OMERO. Searcher: content-based image search for microscope images. Nature Methods, 2012, 9(7): 633–634
https://doi.org/10.1038/nmeth.2086
46 Sprenger J, Fink J L, Karunaratne S, Hanson K, Hamilton N A, Teasdale R D. LOCATE: a mammalian protein subcellular localization database. Nucleic Acids Research, 2008, 36(Suppl 1): D230–D233
https://doi.org/10.1093/nar/gkm950
47 Ljosa V, Sokolnicki K L, Carpenter A E. Annotated high-throughput microscopy image sets for validation. Nat Methods, 2012, 9(7): 637
https://doi.org/10.1038/nmeth.2083
48 Shamir L, Orlov N, Eckley D M, Macura T J, Goldberg I G. IICBU 2008: a proposed benchmark suite for biological image analysis. Medical & Biological Engineering & Computing, 2008, 46(9): 943–947
https://doi.org/10.1007/s11517-008-0380-5
49 Ghaemmaghami S, Huh W-K, Bower K, Howson R W, Belle A, Dephoure N, O’Shea E K, Weissman J S. Global analysis of protein expression in yeast. Nature, 2003, 425(6959): 737–741
https://doi.org/10.1038/nature02046
50 Pontèn F, Jirström K, Uhlen M. The Human Protein Atlas—a tool for pathology. The Journal of Pathology, 2008, 216(4): 387–393
https://doi.org/10.1002/path.2440
51 Martone M E, Zhang S, Gupta A, Qian X, He H, Price D L,Wong M, Santini S, Ellisman M H. The cell-centered database. Neuroinformatics, 2003, 1(4): 379–395
https://doi.org/10.1385/NI:1:4:379
52 Glory E, Murphy R F. Automated subcellular location determination and high-throughput microscopy. Developmental Cell, 2007, 12(1): 7–16
https://doi.org/10.1016/j.devcel.2006.12.007
53 Boland M V, Markey M K, Murphy R F. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry, 1998, 33(3): 366–375
https://doi.org/10.1002/(SICI)1097-0320(19981101)33:3<366::AID-CYTO12>3.0.CO;2-R
54 Osuna E G, Hua J, Bateman N W, Zhao T, Berget P B, Murphy R F. Large-scale automated analysis of location patterns in randomly tagged 3T3 cells. Annals of Biomedical Engineering, 2007, 35(6): 1081–1087
https://doi.org/10.1007/s10439-007-9254-5
55 Hamilton N A, Pantelic R S, Hanson K, Teasdale R D. Fast automated cell phenotype image classification. BMC Bioinformatics, 2007, 8(1): 110
https://doi.org/10.1186/1471-2105-8-110
56 Aturaliya R N, Fink J L, Davis M J, Teasdale M S, Hanson K A, Miranda K C, Forrest A R, Grimmond S M, Suzuki H, Kanamori M. Subcellular localization of mammalian type II membrane proteins. Traffic, 2006, 7(5): 613–625
https://doi.org/10.1111/j.1600-0854.2006.00407.x
57 Huh W-K, Falvo J V, Gerke L C, Carroll A S, Howson R W, Weissman J S, O’Shea E K. Global analysis of protein localization in budding yeast. Nature, 2003, 425(6959): 686–691
https://doi.org/10.1038/nature02026
58 Bannasch D, Mehrle A, Glatting K H, Pepperkok R, Poustka A, Wiemann S. LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system. Nucleic Acids Research, 2004, 32(Suppl 1): D505–D508
https://doi.org/10.1093/nar/gkh022
59 Coelho L P, Glory-Afshar E, Kangas J, Quinn S, Shariff A, Murphy R F. Principles of bioimage informatics: focus on machine learning of cell patterns. In: Blaschke C, Shatkay H, eds. Linking Literature, Information, and Knowledge for Biology. Lecture Notes in Computer Science, Vol 6004. Berlin: Springer, 2010, 8–18
https://doi.org/10.1007/978-3-642-13131-8_2
60 Li J, Newberg J Y, Uhlén M, Lundberg E, Murphy R F. Automated analysis and reannotation of subcellular locations in confocal images from the human protein atlas. PloS One, 2012, 7(11): e50514
https://doi.org/10.1371/journal.pone.0050514
61 Li S, Besson S, Blackburn C, Carroll M, Ferguson R K, Flynn H, Gillen K, Leigh R, Lindner D, Linkert M. Metadata management for high content screening in OMERO. Methods, 2015
62 Boland M V, Murphy R F. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics, 2001, 17(12): 1213–1223
https://doi.org/10.1093/bioinformatics/17.12.1213
63 Newberg J, Murphy R F. A framework for the automated analysis of subcellular patterns in human protein atlas images. Journal of Proteome Research, 2008, 7(6): 2300–2308
https://doi.org/10.1021/pr7007626
64 Shariff A, Kangas J, Coelho L P, Quinn S, Murphy R F. Automated image analysis for high-content screening and analysis. Journal of Biomolecular Screening, 2010, 15(7): 726–734
https://doi.org/10.1177/1087057110370894
65 Tahir M, Khan A. Protein subcellular localization of fluorescence microscopy images: employing new statistical and Texton based image features and SVM based ensemble classification. Information Sciences, 2016, 345: 65–80
https://doi.org/10.1016/j.ins.2016.01.064
66 Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 886–893
https://doi.org/10.1109/cvpr.2005.177
67 Tahir M, Khan A, Majid A, Lumini A. Subcellular localization using fluorescence imagery: utilizing ensemble classification with diverse feature extraction strategies and data balancing. Applied Soft Computing, 2013, 13(11): 4231–4243
https://doi.org/10.1016/j.asoc.2013.06.027
68 Nanni L, Lumini A, Brahnam S. Survey on LBP based texture descriptors for image classification. Expert Systems with Applications, 2012, 39(3): 3634–3641
https://doi.org/10.1016/j.eswa.2011.09.054
69 Paci M, Nanni L, Lahti A, Aalto-Setala K, Hyttinen J, Severi S. Nonbinary coding for texture descriptors in sub-cellular and stem cell image classification. Current Bioinformatics, 2013, 8(2): 208–219
https://doi.org/10.2174/1574893611308020009
70 Yang F, Xu Y-Y, Shen H-B. Many local pattern texture features: which is better for image-based multilabel human protein subcellular localization classification? The Scientific World Journal, 2014
https://doi.org/10.1155/2014/429049
71 Koh J L, Chong Y T, Friesen H, Moses A, Boone C, Andrews B J, Moffat J. CYCLoPs: a comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2015, 5(6): 1223–1232
https://doi.org/10.1534/g3.115.017830
72 Yang F, Xu Y-Y, Wang S-T, Shen H-B. Image-based classification of protein subcellular location patterns in human reproductive tissue by ensemble learning global and local features. Neurocomputing, 2014, 131: 113–123
https://doi.org/10.1016/j.neucom.2013.10.034
73 Zhang B, Gao Y, Zhao S, Liu J. Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Transactions on Image Processing, 2010, 19(2): 533–544
https://doi.org/10.1109/TIP.2009.2035882
74 Guo Z, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 2010, 19(6): 1657–1663
https://doi.org/10.1109/TIP.2010.2044957
75 Lin C-C, Tsai Y-S, Lin Y-S, Chiu T-Y, Hsiung C-C, Lee M-I, Simpson J C, Hsu C-N. Boosting multiclass learning with repeating codes and weak detectors for protein subcellular localization. Bioinformatics, 2007, 23(24): 3374–3381
https://doi.org/10.1093/bioinformatics/btm497
76 Zhao T, Velliste M, Boland M V, Murphy R F. Object type recognition for automated analysis of protein subcellular location. IEEE Transactions on Image Processing, 2005, 14(9): 1351–1359
https://doi.org/10.1109/TIP.2005.852456
77 Godil A, Lian Z, Wagan A. Exploring local features and the bag-ofvisual- words approach for bioimage classification. In: Proceedings of the ACM International Conference on Bioinformatics, Computational Biology and Biomedical Informatics. 2013
78 Coelho L P, Kangas J D, Naik A W, Osuna-Highley E, Glory-Afshar E, Fuhrman M, Simha R, Berget P B, Jarvik J W, Murphy R F. Determining the subcellular location of new proteins from microscope images using local features. Bioinformatics, 2013, 29(18): 2343–2349
https://doi.org/10.1093/bioinformatics/btt392
79 Lowe D G. Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision. 1999, 1150–1157
https://doi.org/10.1109/ICCV.1999.790410
80 Nanni L, Lumini A. A reliable method for cell phenotype image classification. Artificial Intelligence in Medicine, 2008, 43(2): 87–97
https://doi.org/10.1016/j.artmed.2008.03.005
81 Jennrich R I, Sampson P. Stepwise discriminant analysis. Statistical Methods for Digital Computers, 1977, 3: 77–95
82 Huang K, Velliste M, Murphy R F. Feature reduction for improved recognition of subcellular location patterns in fluorescence microscope images. Proceedings of SPIE—The International Society for Optical Engineering, 2003, 4962: 307–318
83 Loo L-H, Wu L F, Altschuler S J. Image-based multivariate profiling of drug responses from single cells. Nature Methods, 2007, 4(5): 445–453
https://doi.org/10.1038/nmeth1032
84 Kouzani A Z. Subcellular localisation of proteins in fluorescent microscope images using a random forest. In: Proceedings of IEEE International Joint Conference on Neural Networks. 2008, 3926–3932
https://doi.org/10.1109/ijcnn.2008.4634362
85 Zhang B, Zhang Y, Lu W, Han G. Phenotype recognition by curvelet transform and random subspace ensemble. Journal of Applied Mathematics and Bioinformatics, 2011, 1(1): 79
86 Newberg J Y, Li J, Rao A, Pontén F, Uhlén M, Lundberg E, Murphy R F. Automated analysis of human protein atlas immunofluorescence images. In: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2009, 1023–1026
https://doi.org/10.1109/isbi.2009.5193229
87 Pärnamaa T, Parts L. Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning. bioRxiv, 2016: 050757
https://doi.org/10.1101/050757
88 Li J, Xiong L, Schneider J, Murphy R F. Protein subcellular location pattern classification in cellular images using latent discriminative models. Bioinformatics, 2012, 28(12): i32–i39
https://doi.org/10.1093/bioinformatics/bts230
89 Nanni L, Lumini A, Lin Y-S, Hsu C-N, Lin C-C. Fusion of systems for automated cell phenotype image classification. Expert Systems with Applications, 2010, 37(2): 1556–1562
https://doi.org/10.1016/j.eswa.2009.06.062
90 Huang K, Murphy R F. Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics, 2004, 5(1): 78
https://doi.org/10.1186/1471-2105-5-78
91 Chebira A, Barbotin Y, Jackson C, Merryman T, Srinivasa G, Murphy R F, Kovaˇcvíc J. A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinformatics, 2007, 8(1): 210
https://doi.org/10.1186/1471-2105-8-210
92 Loo L-H, Laksameethanasan D, Tung Y-L. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins. PLoS Comput Biol, 2014, 10(3): e1003504
https://doi.org/10.1371/journal.pcbi.1003504
93 Shen H B, Chou K C. Hum-mPLoc: an ensemble classifier for largescale human protein subcellular location prediction by incorporating samples with multiple sites. Biochemical & Biophysical Research Communications, 2007, 355(4): 1006–1011
https://doi.org/10.1016/j.bbrc.2007.02.071
94 Shen H B, Chou K C. A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0. Analytical Biochemistry, 2009, 394(2): 269–274
https://doi.org/10.1016/j.ab.2009.07.046
95 Zhu L,Yang J, Shen H-B. Multi label learning for prediction of human protein subcellular localizations. The Protein Journal, 2009, 28(9–10): 384–390
https://doi.org/10.1007/s10930-009-9205-0
96 Boutell M R, Luo J, Shen X, Brown C M. Learning multi-label scene classification. Pattern Recognition, 2004, 37(9): 1757–1771
https://doi.org/10.1016/j.patcog.2004.03.009
97 Read J, Pfahringer B, Holmes G, Frank E. Classifier chains for multilabel classification. Machine Learning, 2011, 85(3): 333–359
https://doi.org/10.1007/s10994-011-5256-5
98 Hu C-D, Kerppola T K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature Biotechnology, 2003, 21(5): 539–545
https://doi.org/10.1038/nbt816
99 Shao W, Liu M, Zhang D. Human cell structure-driven model construction for predicting protein subcellular location from biological images. Bioinformatics, 2016, 32(1): 114–121
100 Chen X, Murphy R F. Objective clustering of proteins based on subcellular location patterns. BioMed Research International, 2005, 2005(2): 87–95
https://doi.org/10.1155/jbb.2005.87
101 Chen X, Velliste M, Weinstein S, Jarvik J W, Murphy R F. Location proteomics: building subcellular location trees from highresolution 3D fluorescence microscope images of randomly tagged proteins. In: Proceedings of SPIE 4962, Manipulation and Analysis of Biomolecules, Cells, and Tissues. 2003, 298–306
https://doi.org/10.1117/12.477899
102 Coelho L P, Peng T, Murphy R F. Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics, 2010, 26(12): i7–i12
https://doi.org/10.1093/bioinformatics/btq220
103 Hamilton N A, Teasdale R D. Visualizing and clustering high throughputsub-cellular localization imaging. BMC Bioinformatics, 2008, 9(1): 81
https://doi.org/10.1186/1471-2105-9-81
104 Handfield L-F, Chong Y T, Simmons J, Andrews B J, Moses A M. Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins. PLoS Comput Biol, 2013, 9(6): e1003085
https://doi.org/10.1371/journal.pcbi.1003085
105 Zhu X, Goldberg A B. Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence andMachine Learning, 2009, 3(1): 1–130
106 Lin Y-S, Huang Y-H, Lin C-C, Hsu C-N. Feature space transformation for semi-supervised learning for protein subcellular localization in fluorescence microscopy images. In: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2009, 414–417
107 Zhu S, Matsudaira P, Welsch R, Rajapakse J C. Quantification of cytoskeletal protein localization from high-content images. In: Dijkstra T M H, Tsivtsivadze E, Marchiori E, et al., eds. Pattern Recognition in Bioinformatics. Lecture Notes in Computer Science, Vol 6282. Berlin: Springer, 2010, 289–300
https://doi.org/10.1007/978-3-642-16001-1_25
108 Shamir L, Delaney J D, Orlov N, Eckley D M, Goldberg I G. Pattern recognition software and techniques for biological image analysis. PLoS Comput Biol, 2010, 6(11): e1000974
https://doi.org/10.1371/journal.pcbi.1000974
109 Foster L J, de Hoog C L, Zhang Y, Zhang Y, Xie X, Mootha V K, Mann M. A mammalian organelle map by protein correlation profiling. Cell, 2006, 125(1): 187–199
https://doi.org/10.1016/j.cell.2006.03.022
110 Buck T E, Rao A, Coelho L P, Fuhrman M H, Jarvik J W, Berget P B, Murphy R F. Cell cycle dependence of protein subcellular location inferred from static, asynchronous images. In: Proceedings of IEEE Annual International Conference on Engineering in Medicine and Biology Society. 2009, 1016–1019
https://doi.org/10.1109/iembs.2009.5332888
111 Kumar A, Agarwal S, Heyman J A, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y. Subcellular localization of the yeast proteome. Genes & Development, 2002, 16(6): 707–719
https://doi.org/10.1101/gad.970902
112 Naik A W, Kangas J D, Sullivan D P, Murphy R F. Active machine learning-driven experimentation to determine compound effects on protein patterns. eLife, 2016, 5: e10047
https://doi.org/10.7554/eLife.10047
113 Nair R, Rost B. Predicting protein subcellular localization using intelligent systems. In: Markel S, León D, eds. Silico Technology in Drug Target Identification and Validation. Boca Raton, FL: CRC Press, 2006, 261–284
https://doi.org/10.1201/9781420015737.ch10
114 Pierleoni A, Martelli P L, Fariselli P, Casadio R. BaCelLo: a balanced subcellular localization predictor. Bioinformatics, 2006, 22(14): e408–e416
https://doi.org/10.1093/bioinformatics/btl222
115 Winsnes C F, Sullivan D P, Smith K, Lundberg E. Multi-label prediction of subcellular localization in confocal images using deep neural networks. Molecular Biology of the Cell, 2016, 27
116 Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T. Gene ontology: tool for the unification of biology. Nature Genetics, 2000, 25(1): 25–29
https://doi.org/10.1038/75556
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed