Please wait a minute...

Frontiers of Computer Science

Front. Comput. Sci.    2018, Vol. 12 Issue (1) : 177-189     https://doi.org/10.1007/s11704-016-5271-6
RESEARCH ARTICLE |
Efficient identity-based threshold decryption scheme from bilinear pairings
Wei GAO1,2,3(), Guilin WANG4, Kefei CHEN5, Xueli WANG6
1. School of Mathematics and Statistics, Ludong University, Yantai 264025, China
2. School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China
3. Key Laboratory of Information Security, Guangzhou University, Guangzhou 510006, China
4. Shield Lab, Singapore Research Center of Huawei, Singapore 117674, Singapore
5. Department of Mathematics, Hangzhou Normal University, Hangzhou 311121,China
6. School of Mathematics, South China Normal University, Guangzhou 510631, China
Download: PDF(350 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Using Shamir’s secret sharing scheme to indirectly share the identity-based private key in the form of a pairing group element, we propose an efficient identity-based threshold decryption scheme from pairings and prove its security in the random oracle model. This new paring-based scheme features a few improvements compared with other schemes in the literature. The two most noticeable features are its efficiency, by drastically reducing the number of pairing computations, and the ability it gives the user to share the identity-based private key without requiring any access to a private key generator. With the ability it gives the user to share the identity-based private key, our ID-based threshold decryption (IBTD) scheme, the second of its kind, is significantly more efficient than the first scheme, which was developed by Baek and Zheng, at the expense of a slightly increased ciphertext length. In fact, our IBTD scheme tries to use as few bilinear pairings as possible, especially without depending on the suite of Baek–Zheng secret sharing tools based on pairings.

Keywords identity-based cryptography      threshold cryptography      provable security      random oracle model      bilinear pairing      identity-based threshold decryption     
Corresponding Authors: Wei GAO   
Just Accepted Date: 07 December 2016   Online First Date: 27 November 2017    Issue Date: 12 January 2018
 Cite this article:   
Wei GAO,Guilin WANG,Kefei CHEN, et al. Efficient identity-based threshold decryption scheme from bilinear pairings[J]. Front. Comput. Sci., 2018, 12(1): 177-189.
 URL:  
http://journal.hep.com.cn/fcs/EN/10.1007/s11704-016-5271-6
http://journal.hep.com.cn/fcs/EN/Y2018/V12/I1/177
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei GAO
Guilin WANG
Kefei CHEN
Xueli WANG
1 Shamir A. Identity-based cryptosystems and signature schemes. In: Proceedins of Advances in Cryptology-Crypto. 1984, 47–53
2 Boneh D, Franklin M. Identity-based encryption from theWeil pairing. In: Proceedings of Advances in Cryptology-Crypto. 2001, 213–229
3 Beak J, Newmarch J, Safavi-Naini R, Susilo W. A survey of identitybased cryptography. In: Proceedings of Australian Unix Users Group Annual Conference. 2004, 95–102
4 Desmedt Y, Frankel Y. Threshold cryptosystems. In: Proceedings of Advances in Cryptology-CRYPTO. 1990, 307–315
https://doi.org/10.1007/0-387-34805-0_28
5 Santis A, Desmedt Y, Frankel Y, Yung M. How to share a function securely. In: Proceedings of the 26th ACM Symposium on Theory of Computing. 1994, 522–533
https://doi.org/10.1145/195058.195405
6 Shoup V, Gennaro R. Securing threshold cryptosystems against chosen ciphertext attack. Journal of Cryptology, 2002, 15(2): 75–96
https://doi.org/10.1007/s00145-001-0020-9
7 Guo P, Wang J, Li B, Lee S. A variable threshold-value authentication architecture for wireless mesh networks. Journal of Internet Technology, 2014, 15(6): 929–936
8 Fu Z J, Ren K, Shu J G, Sun X M, Huang F X. Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(9): 2546–2559
https://doi.org/10.1109/TPDS.2015.2506573
9 Fu Z J, Wu X L, Guan C W, Sun X M, Ren K. Towards efficient multikeyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Transactions on Information Forensics and Security, 2016, 11(12): 2706–2716
https://doi.org/10.1109/TIFS.2016.2596138
10 Baek J, Zheng Y L. Identity-based threshold decryption. In: Proceedings of Public Key Cryptography-PKC. 2004, 262–276
https://doi.org/10.1007/978-3-540-24632-9_19
11 Boneh D, Ding X, Tsudik G, Wong C. A method for fast revocation of public key certificates and security capabilities. In: Proceedings of the 10th USENIX Security Symposium. 2001, 297–310
12 Boneh D, Boyen X, Halevi S. Chosen ciphertext secure public key threshold encryption without random oracles. In: Proceedings of Topics in Cryptology-CT-RSA. 2006, 226–243
https://doi.org/10.1007/11605805_15
13 Boneh D, Boyen X. Efficient selective-ID identity based encryption without random oracles. In: Proceedings of Advances in Cryptology- Eurocrypt. 2004, 522–533
https://doi.org/10.1007/978-3-540-24676-3_14
14 Libert B, Quisquater J. Efficient revocation and threshold pairing based cryptosystems. In: Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing. 2003, 163–171
https://doi.org/10.1145/872035.872059
15 Chai Z C, Cao Z F, Lu R X. ID-based threshold decryption without random oracles and its application in key escrow. In: Proceedings of the 3rd International Conference on Information Security. 2004, 119–124
https://doi.org/10.1145/1046290.1046314
16 Long L, Chen K F, Liu S L. ID-based threshold decryption secure against adaptive chosen-ciphertext attack. Computers and Electrical Engineering, 2007, 33 (3): 166–176
https://doi.org/10.1016/j.compeleceng.2006.11.003
17 Zhang L Y, Hu Y P, Tian X A, Yang Y. New constructions of identitybased threshold decryption. Wuhan University Journal of Natural Sciences, 2010, 15(3): 222–226
https://doi.org/10.1007/s11859-010-0308-4
18 Ming Y, Wang Y M. Identity-based threshold decryption scheme without random oracles. Chinese Journal of Electronics, 2011, 20(2): 323–328
19 Zhang X, Chen M R, Liu H. Practical identity-based threshold decryption scheme without random oracle. Journal of Shenzhen University Science & Engineering, 2010, 27(3): 340–346
20 Zhao C A, Zhang F G. Research and development on efficient pairing computations. Journal of Software, 2009, 20 (11): 3001–3009
https://doi.org/10.3724/SP.J.1001.2009.03651
21 Bos J W, Costello C, Naehrig M. Exponentiating in pairing groups. In: Proceedings of Selected Areas in Cryptography-SAC. 2014, 438–455
https://doi.org/10.1007/978-3-662-43414-7_22
22 Ren Y J, Shen J, Wang J, Han J, Lee S Y. Mutual verifiable provable data auditing in public cloud storage. Journal of Internet Technology, 2015, 16(2): 317–323
23 Shamir A. How to share a secret. Communications of the ACM, 1979, 22(11): 612–613
https://doi.org/10.1145/359168.359176
24 Xie S D, Wang Y X. Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Personal Communications, 2014, 78(1): 231–246
https://doi.org/10.1007/s11277-014-1748-5
25 Shen J, Tan H W, Wang J, Wang J W, Lee S. A novel routing protocol providing good transmission reliability in underwater sensor networks. Journal of Internet Technology, 2015, 16(1): 171–178
26 Chaum D, Pedersen T. Wallet databases with observers. In: Proceedings of Advances in Cryptology-Crypto. 1992, 89–105
27 Aranha D F, Barreto P S L M, Longa P, Ricardini J E. The realm of the pairings. In: Proceedings of International Workshop on Selected Areas in Cryptography-SAC. 2014, 3–25
https://doi.org/10.1007/978-3-662-43414-7_1
28 Tang C M, Ni D M, Xu M Z, Guo B A, Qi Y F. Implementing optimized pairings with elliptic nets. Science China Information Sciences, 2014, 57(5): 1–10
https://doi.org/10.1007/s11432-013-4840-7
29 Chen S, Zhang X S, Wang K P, Lin D D. Six subfamilies of implementation-friendly Barreto-Naehrig curves. Chinese Journal of Electronics, 2014, 23(1): 169–174
30 Chen S, Wang K P, Lin D D. Omega pairing on hyperelliptic curves. Information Security and Cryptology. In: Proceedings of the 9th International Conference on Information Security and Cryptology-Inscrypt. 2013, 167–184
31 Desmedt Y, Lange Y. Pairing based threshold cryptography improving on Libert-Quisquater and Baek-Zheng. In: Proceedings of International Conference on Financial Cryptography and Data Security 2006. 2006, 154–159
https://doi.org/10.1007/11889663_12
Related articles from Frontiers Journals
[1] Huiyan ZHAO,Jia YU,Shaoxia DUAN,Xiangguo CHENG,Rong HAO. Key-insulated aggregate signature[J]. Front. Comput. Sci., 2014, 8(5): 837-846.
[2] Wenbo SHI,Neeraj KUMAR,Peng GONG,Zezhong ZHANG. Cryptanalysis and improvement of a certificateless signcryption scheme without bilinear pairing[J]. Front. Comput. Sci., 2014, 8(4): 656-666.
[3] Lin CHENG, Qiaoyan WEN, Zhengping JIN, Hua ZHANG. Cryptanalysis and improvement of a certificateless encryption scheme in the standard model[J]. Front. Comput. Sci., 2014, 8(1): 163-173.
[4] Haiyan SUN, Qiaoyan WEN, Hua ZHANG, Zhengping JIN. A novel pairing-free certificateless authenticated key agreement protocol with provable security[J]. Front Comput Sci, 2013, 7(4): 544-557.
[5] Rajeev Anand SAHU, Sahadeo PADHYE. Efficient ID-based proxy multi-signature scheme secure in random oracle[J]. Front Comput Sci, 2012, 6(4): 421-428.
[6] Xixiang LV, Hui LI, Baocang WANG. Identity-based key distribution for mobile Ad Hoc networks[J]. Front Comput Sci Chin, 2011, 5(4): 442-447.
[7] WANG Lingling, ZHANG Guoyin, MA Chunguang. ID-based deniable ring authentication with constant-size signature[J]. Front. Comput. Sci., 2008, 2(1): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed