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Abstract To improve the accuracy of runoff forecasting,
an uncertain multiple linear regression (UMLR) model is
presented in this study. The proposed model avoids the
transfer of random error generated in the independent
variable to the dependent variable, as this affects prediction
accuracy. On this basis, an inexact two-stage stochastic
programming (ITSP) model is used for crop planting
structure optimization (CPSO) with the inputs that are
interval flow values under different probabilities obtained
from the UMLR model. The developed system, in which
the UMLR model for runoff forecasting and the ITSP
model for crop planting structure optimization are
integrated, is applied to a real case study. The aim of the
developed system is to optimize crops planting area with
limited available water resources base on the downstream
runoff forecasting in order to obtain the maximum system
benefit in the future. The solution obtained can demon-
strate the feasibility and suitability of the developed
system, and help decision makers to identify reasonable
crop planting structure under multiple uncertainties.

Keywords crop planting structure optimization, inexact
two-stage stochastic programming, runoff forecasting,
Shiyang River Basin, uncertain multiple linear regression

1 Introduction

Increase in water demand and reduction in available water
supply are in direct competition, which exacerbates the
shortage of agricultural water resources[1] and this problem
is particularly severe in arid and semi-arid areas. To make
full use of limited water resources for agricultural
production, crop planting structure optimization is an

important approach to increase agricultural economic
benefits and improve agricultural water management[2–4].
CPSO is a complex system with many uncertain

parameters, such as crop planting area, irrigation water
use efficiency, available water supply and economic
parameters. The comprehensive benefits of the system
are influenced by all those parameters and phenomena due
to their uncertainty characteristics[5,6]. If defined para-
meters or models are employed simply instead of uncertain
ones, unreliable results will be obtained with important
information missing[7,8]. Among all the uncertain para-
meters, surface water is quite significant and will directly
affect the optimal scheme of crop planting structure
adjustment. The main source of the available surface
water is catchment runoff. Hence, for accurately optimiz-
ing crop planting structure in the future, the accurate
prediction of catchment runoff is desirable. Much research
has focused on hydrological forecasting methods in order
to obtain more accurate predictions for runoff[9–11]. Of the
methods evaluated, a multiple linear regression (MLR)
model has proven to be an effective forecast method[5,12].
In the process of prediction, the random error generated in
the prediction of the independent variable can transfer to
the dependent variable, which seriously influences the
prediction accuracy. In addition, climate change and
human activities exacerbate the complex uncertainties in
runoff forecasting. To date, few studies have attempted to
overcome these disadvantages. Consequently, improve-
ments in the uncertain MLR method are still needed.
Inexact two-stage stochastic programming (ITSP)

modes are capable of dealing with the interval parameter
with the lower and upper bounds combining with the
stochastic process[13,14]. ITSP models have been widely
applied to CPSO owing to the stochastic characteristics in
available water recourses. For example, ITSP was used to
deal with not only the stochastic nature of different water
availabilities in different hydrological years, but also the
interval uncertainty that emerges in statistics of crop prices
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and costs[15]. However, previous studies have not been able
to integrate runoff forecasting under uncertainty with ITSP,
and thus cannot provide dynamic decision suggestions for
crop planting structure adjustment.
Therefore, this study aimed to improve the MLR model

to avoid poor accuracy of the forecast results, and optimize
the crop planting structure based on the results of an
improved uncertain multiple linear regression (UMLR)
model. The improved model was then applied to a case
study to evaluate how the system can be used to adjust crop
planting structure more efficiently. The study encom-
passed: (1) the formulation of an UMLR model based on
MLR model for runoff forecasting, (2) the development of
an ITSP model for CPSOmodel integrating the flow values
under different probabilities, which are the results from the
UMLR model, (3) the application of the improved model
to a real case study in the Shiyang River Basin, north-west
China, and (4) the analysis the results under multiple
scenarios to provide recommendations for crop planting
structure adjustment.

2 Study system

2.1 Study area

The study area was the Shiyang River Basin (101°41′–
104°16′ E, 36°29′–39°27′ N) (Fig. 1), which is one of three
continental rivers in the Hexi corridor of Gansu Province,
north-west China. The Shiyang River Basin has a typical
arid continental climate, characterized by low and irregular
rainfall, high evaporation and drought periods. It has the
most serious water shortage in the Hexi Corridor[16–18].
The Shiyang River originates in the Qilian Mountain and
consists of eight tributaries, Dajing, Gulang, Huangyang,
Zamu, Jinta, Xiying, Dongda and Xida rivers (east to

west). All rivers except the Dajing and converge at the
Shiyang River and then flow into the Minqin Basin[19].
Minqin County is located in the lower reaches of the
Shiyang River Basin, with an area of 41400 km2, which is
one of the most important agricultural counties of Wuwei.
Through the Caiqi Hydrologic Station, the Shiyang River
flows into the Hongya Mountain Reservoir, the largest
desert reservoir in Asia. The available water resources in
Minqin County are mainly supplied by surface water from
the Caiqi Station, groundwater and diverted water. About
70% to 80% of the water consumption is used for
agricultural irrigation, which is the largest water user of
the whole system. Due to climatic change, population
growth, agricultural and economic development stream
flow into Minqin County has decreased sharply in recent
years. The annual inflow through the Caiqi Station dropped
from about 5.78 � 108 m3 in 1955 to less than 1.00 �
108 m3 in 2004.
Poor management practices and unsuitable crop land use

make the conflict between water supply and water demand
more intense. To guarantee sustainable development of the
region, the regional development planning requires that
water allocation must fulfill domestic and basic ecological
water demand first, then industrial water, which means
adjustment of agricultural water use is imperative. There-
fore, appropriate agricultural planning within the available
water resources, taking into account changing stream flows,
is crucial not only for agricultural production but also socio-
economic development and ecological restoration in the
Minqin Basin. It is important to accurately predict runoff
from the Shiyang River into the Minqin Basin, as a guide
for the adjustment of crop planting structure.

2.2 Data collection

Meteorological data for the Wuwei Sub-basin, streamflow

Fig. 1 Location of Shiyang River Basin in north-west China
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data for the Shiyang River Basin, and some basic regional
data for the Wuwei Sub-basin were used in this study.
Meteorological data for the Wuwei Sub-basin including
annual mean temperature and annual mean precipitation
data, were obtained from the China Meteorological Data
Sharing Service System. Flow data for the six tributaries
obtained from their respective observation stations, and
inflow data for Minqin Country were from the Caiqi
Station. Population of Wuwei Sub-basin, effective irrigated
area and the value of agricultural output, were obtained
from Statistical Yearbook of Wuwei City[20]. All the data
above were for the period 1955 to 2014.
Moreover, to predict the appropriate crop planting

structure for Minqin Basin under dynamic inflow, the
data used in the optimization model were as follows. Area
data and crop output per unit area for 2009 to 2014
were from Statistical Yearbook of Wuwei City[20]. The
demand for food and vegetables from Dietary Guidelines
for Chinese[21]. Groundwater and water diversion data
were collected from the Shiyang River Basin Key
Governance Projects[22].

2.3 System framework

This paper attempts to combine the optimization model
for crop planting structure with runoff forecasting, where
the runoff forecasting uses the improved UMLR model
to enhance the accuracy of prediction results, and the
optimization part applies the ITSP model to optimize
crop planting structure. The common point between
runoff forecasting and optimization is the available surface
water of Minqin Country. A brief description is given in
Fig. 2.

3 UMLR model for runoff forecasting

3.1 UMLR model

The MLR model, one of the earliest models used in
medium and long-term hydrological forecasting, is still
widely applied to related research[12,23]. The MLR model
is usually given mathematically as:

R ¼ β0 þ β1X1 þ β2X2 þ ⋯þ βnXn þ e (1)

where the dependent variable R represents the recon-
structed/forecasting annual downstream flow; the indepen-
dent variables X1,X2,:::,Xn denote the factors that affect
runoff; The constants β1,β2,:::,βn are the regression
coefficients obtained by the least-squares method; and
parameter e is the random error with a normal distribution.
However, when the MLR model is used to predict

runoff, the values of multiple independent variables are
difficult to predict accurately. Consequently, the propaga-
tion of random errors will be passed to the predicted value
through the MLR model, which will obviously reduce
prediction accuracy. To improve the prediction accuracy of
runoff forecasting and make full use of uncertain
information in independent variables, an improved
UMLR model was developed in this study. This UMLR
model decomposes the independent variables in the MLR
model into the sum of the change trend and the random
error. It is described as

Xn ¼ xn þ αn (2)

where xn is the trend of the independent variable; and αn is
the random error of the true value deviates from the trend

Fig. 2 System framework of integrated uncertain models in this research

Fan ZHANG et al. Simulation-based crop planting structure optimization under uncertainty 179



with a normal distribution. By combining Eq. (1) and
Eq. (2), Eq. (3) is obtained. This integrates the random
error from the MLR model and decomposition.

R ¼ β0 þ β1x1 þ β2x2 þ ⋯þ βnxnþ

ðα1β1 þ α2β2 þ ⋯þ βnαn þ eÞ (3)

Finally, UMLR model is formulated as:

R ¼ β0 þ β1x1 þ β2x2 þ ⋯þ βnxn þ � (4)

where parameter � is the sum of random errors from the
MLRmodel and decomposition with a normal distribution.

3.2 Runoff prediction

According to previous studies[5,24,25], the change in runoff
from upstream and downstream of the Shiyang River Basin
occurred in about 1975. Therefore, the runoff series of the
Shiyang River Basin from 1975 to 2014 was selected to
ensure a stable sequence. To ensure the regression model
effectiveness, the independent variables should be chosen
carefully. The criteria for the selection of independent
variables are: (1) the independent variables should have a
significant effect on the dependent variable with a close
linear correlation; (2) the linear correlation between the
independent variable and the dependent variable must be
authentic not just formal; (3) there should be a certain
degree of mutual exclusion between the independent
variables, that is, the degree of correlation among the
independent variables should not be higher than the degree
of correlation with the dependent variable; and (4) the
independent variables should have complete statistical data
with predictions that are easily to determined.
The correlation coefficients of variables that may affect

the inflow in the Caiqi Station are shown in Table 1. In

accordance with the criteria for selection of independent
variables, the total flow of six tributaries at mountain
outlets, the population of Wuwei Sub-basin, and annual
mean temperature were selected as the independent
variables of the MLR model to simulate and predict the
inflow in the Caiqi Station. The regression equation is:

R ¼ 6:530þ 0:095 U – 0:887  P – 0:837  T þ e (5)

where R represents the inflow in the Caiqi Station; U is the
total flow of six tributaries at mountain outlets; P denotes
the population of Wuwei Sub-basin; T means the annual
mean temperature of Wuwei Sub-basin; e is the random
residuals with normal distribution.
To assess the accuracy of the forecasts, deterministic

coefficient (DC) and qualified rate (QR) were used[26]. The
values of these two indicators were DC = 0.91 and QR =
75.0%, respectively, demonstrating that the precision of the
forecast is relatively reliable in accordance with the normal
standards of the People’s Republic of China, Standard for
Hydrological Information and Hydrological Forecas-
ting[21] for accuracy of runoff forecasting.
The linear model was used to simulate the total flow of

six of the tributaries at their mountain outlets and the
annual mean temperature of Wuwei Sub-basin from 1955
to 2014, and to forecast trends in these variables from 2015
to 2020 (Fig. 3). Figure 3 shows that the annual total flow
of six tributaries at their mountain outlets showed an
obviously declining trend. In contrast, the annual mean
temperature had a rising trend. Through the linear model,
the actual value between 1955 and 2014 was partitioned
into the trend and the random residual.
The exponential model was used to forecast the natural

growth rate for the population of Wuwei Sub-basin in
Shiyang River Basin north-west China from 2015 to 2020.
The trend and the random residual are shown in Fig. 4.

Table 1 Correlated coefficients of variable affecting inflow at Caiqi Hydrology Station in the Shiyang River Basin north-west China

Variables
Total flow of six
tributaries at

mountain outlets

Population of
Wuwei Sub-basin

Effective
irrigated area

Annual mean
temperature

Annual mean
precipitation

The price of
agricultural total
output value

Inflow in the
Caiqi Station

Total flow of six
tributaries at
mountain outlets

1.00 - - - - - -

Population of
Wuwei sub-basin

-0.22 1.00 - - - - -

Effective irrigated
area

-0.20 0.89 1.00 - - - -

Annual mean
temperature

-0.28 0.75 0.62 1.00 - - -

Annual mean
precipitation

0.28 0.18 0.24 -0.17 1.00 - -

The price of
agricultural total
output value

-0.21 0.61 0.46 0.73 -0.14 1.00 -

Inflow in the
Caiqi Station

0.45 -0.88 -0.73 -0.84 0.02 -0.75 1.00
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Using the above values in the UMLRmodel, the trend of
inflow in the Caiqi Station in the period 1975 to 2020 was
calculated. At the same time, random error � was fitted by
normal distribution (Fig. 5). The UMLR model avoids the
metastasis of the random error from the independent
variable prediction to the inflow in the Caiqi Station
prediction, and provide not only possible intervals but also
the probability of each interval. To obtain the flow values
under different probabilities at the Caiqi Station from 2015
to 2020, the fitted normal distribution was divided into
three discrete probability intervals. The Pauta criterion, a
method distinguishing rough error by judging the calcu-
lated probability of interval beyond the interval of 3�, was
used to obtain probability interval boundaries. Then, the
normal distribution was divided at probabilities of 75%
(low flow level), 50% (medium flow level), and 25% (high

flow level), and three probability intervals of inflow in the
Caiqi Station from 2015 to 2020 were obtained (Fig. 6).
Figure 6 shows that the inflow in the Caiqi Station is

predicted to have a downward trend from 2015 to 2020.
This indicates the necessity to optimize crop planting
structure because water available to agriculture will reduce
in the future. This forecast estimates the f surface water
available in the future for CPSO.

4 ITSP model for crop planting structure
optimization

4.1 ITSP model

Two-stage stochastic programming (TSP) refers to a

Fig. 3 The total flow of six tributaries at mountain outlets (a) and the annual mean temperature (b) of Wuwei Sub-basin in Shiyang River
Basin north-west China simulation and forecast with linear model

Fig. 4 The natural growth rate of the population (a) and the population of Wuwei Sub-basin in Shiyang River Basin north-west China
forecasting result (b)

Fig. 5 The trend of inflow at the Caiqi Station, Shiyang River Basin north-west of China (a) and normal distribution fitting of � (b)
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tradeoff between predefined strategies and the associated
adaptive adjustments[27]. The TSP model can correct the
decision in the first stage through making the decision in
the second stage after the random event happened in order
to reduce the decision risk and obtain the best compromise
schemes[28,29]. In addition, owing to the uncertainties, most
real-world problems may lead to the introduction of
ambiguous inexact parameters into the TSP framework to
result in an ITSP model[13,30].
ITSP was used to solve many practical problems[31–33].

The ITSP model for crop planting structural optimization
with a maximized planting benefit objective can be
mathematically expressed as[15]:

Max f � ¼
XI

i¼1

A�
i R

�
i –

XI

i¼1

XK

k¼1

pkL
�
i A

í�
ik 8i, k (6a)

where the subscripts i = 1, 2,…, I are the types of crops and
I is the total number of crop types, I = 5 with i = 1, 2, 3
representing grain crops and i = 4, 5 representing economic
crops; k = 1, 2, …, K represents various scenarios of
available water levels and K is the total number of scenarios
of available water level, with k = 1 representing the low
flow level, k = 2 representing the medium flow level and k =
3 representing the high flow level. f (in a currency unit,
CNY) denotes the desired value of planting benefit; Ri

(CNY$hm–2) is the net income per unit area of crop I; pk is
the probability of occurrence of level k; Li (CNY$hm

–2) is
the loss of crop i in the absence of sufficient water, and
Li>Ri; the decision variable Ai and A#ik (hm

2) are the first
stage decision crop area and second stage decision crop
area, respectively; and the superscripts “+” and “ – ” are the
upper and lower bounds of the corresponding parameters,
respectively (e.g., the upper and lower bounds of the
decision variable A�

i can be expressed as Aþ
i and A –

i ).
Subject to:

XI

i¼1

Mi ðA�
i –Aí�ik Þ£Q�

k η 8i, k (6b)

(available water constraints)

a£

X2

i¼1

ðA�
i –A�

ikÞ

X5

i¼3

ðA�
i –A�

ikÞ
£b 8i, k (6c)

(regional crop structure planning constraints)
ðA�

i –Aí�ik ÞYi³Di 8i, k (6d)

(food security constraints)

A�
i ³Aí�ik ³0 8i, k (6e)

(non-negativity constraints)
where h is the irrigation water utilization efficiency; Q�

k
(108 m3) represents the total amount of available water of
selected crops in scene k, including surface water, ground
water and water transfer from other regions; Mi (m

3$hm–2)
is the irrigation quota of crop I; a and b are the ratio of
grain crops planting area and economic crop area, which
should satisfy the general plan of the region; Yi (kg$hm

–2)
is the yield of crop I; and Di (kg) is the minimum demand
of crop i in this region.
Since the objective is to maximize the system benefits,

the sub-model corresponding to f+ should be calculated
first. According to the related researches[28,33,34], this
model (Eqs. (6a)–(6e))can be solved by decomposing it
into two sub-model as follows,
The upper bound value of objective function f+:

Max f þ ¼
XI

i¼1

ðA –
i þ ΔAiziÞRþ

i –
XI

i¼1

XK

k¼1

pkL
–
i A

í–
ik 8i, k

(7a)

Fig. 6 Three probability intervals of inflow in the Caiqi Station, Shiyang River Basin north-west of China from 2015 to 2020
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subject to:

XI

i¼1

Mi ½ðA –
i þ ΔAiziÞ –Aí–ik �£Qþ

k η 8i, k (7b)

a£

X2

i¼1

½ðA –
i þ ΔAiziÞ –Aí–ik �

X5

i¼3

½ðA –
i þ ΔAiziÞ –Aí–ik �

£b 8i, k (7c)

½ðA –
i þ ΔAiziÞ –Aí–ik �Yi³Di 8i, k (7d)

A –
i þ ΔAizi³Aí–ik ³0 8i, k (7e)

0£zi£1 (7f )

where zi and Aí–ik are decision variables. zi opt, A
í–
ik   opt, and

f þopt are the solutions of the sub-model (Eqs. (7a)–7(f)). The
optimized first-stage variable can be obtained by
A�
i  opt ¼ A –

i þ Ai$zi  opt, which may correspond to opti-
mized upper bound objective function value.
The lower bound value of objective function f –:

Max f – ¼
XI

i¼1

ðA –
i þ ΔAizioptÞR –

i –
XI

i¼1

XK

k¼1

pkL
þ
i A

íþ
ik 8i, k

(8a)

subject to:

XI

i¼1

Mi ½ðA –
i þ ΔAizioptÞ –Aíþik �£Q –

k $η 8i, k (8b)

a£

X2

i¼1

½ðA –
i þ ΔAizioptÞ –Aíþik �

X5

i¼3

½ðA –
i þ ΔAizioptÞ –Aíþik �

£b 8i, k (8c)

½ðA –
i þ ΔAizioptÞ –Aíþik �Yi³Di 8i, k (8d)

A –
i þ ΔAizi³Aíþik ³Aí–ik – opt 8i, k (8e)

where Aíþik is the decision variable. Aíþik   opt and f –
opt are

solutions of the sub-model (Eqs. (8a)–8(e)). Thus, optimal
solutions of model (Eqs. (6a)–6(e)) can be obtained as:

f �opt ¼ ½f –
opt, f

þ
opt� (9)

A�
i  opt ¼ A –

i þ ΔAi$zi  opt (10)

Aí�ik   opt ¼ ½Aí–ik   opt, Aíþik   opt� (11)

Optimized area of selected crop can be give as:

½ðA –
i þ ΔAizioptÞ –Aíþik ,ðA –

i þ ΔAizioptÞ –Aí–ik � (12)

4.2 Analysis and discussion

The inflow in the Hongya Mountain Reservoir includes the
water upstream of the Shiyang River and diverted water
from other regions. The diverted water ranges from about
(1.99–2.33) � 108 m3$yr–1 from Liangzhou District and
Jingdian Reservoir. The maximum recoverable amount of
groundwater is 1.16 � 108 m3. According to The Shiyang
River Basin Key Governance Projects[22], the ratio of water
available to agriculture and the total water available in
Minqin County from 2015 to 2020 can be obtained as 0.56,
0.62, 0.61, 0.61, 0.61, and 0.60. Wheat, corn, vegetables,
sunflower and cotton are the five major crops in Minqin
County accounting for 80% of the total area planted, so
80% of the water available to agriculture was taken as the
available water for the planting structure optimization for
these five crops (Table 2). Other data for the five crops are
listed in Table 3. These data were inputs of the ITSP model
for CPSO.
The submodels (Eqs. (7a)–(7e) and Eqs. (8a)–(8e)) of

the ITSP model were solved under the limited available
water of selected crops, then the optimized results for each
selected crop compared with prevailing conditions (crop
planting area in 2014) (Fig. 7).
Figure 7 shows that the inflow at Caiqi Station from

2015 to 2020 obtained by UMLRmodel based on available
water predictions affects the optimal planting area of the

Table 2 Range ([upper bound, lower bound] � 108 m3$yr–1) of available water for the five major crops in Minqin County, Shiyang River Basin

north-west of China

Year Low flow level (75%) Medium flow level (50%) High flow level (25%)

2015 [1.35, 1.76] [1.62, 1.92] [1.78, 2.20]

2016 [1.49, 1.95] [1.79, 2.13] [1.97, 2.43]

2017 [1.47, 1.93] [1.77, 2.11] [1.95, 2.41]

2018 [1.45, 1.91] [1.75, 2.08] [1.93, 2.39]

2019 [1.43, 1.88] [1.73, 2.06] [1.91, 2.36]

2020 [1.41, 1.86] [1.71, 2.04] [1.88, 2.34]

Fan ZHANG et al. Simulation-based crop planting structure optimization under uncertainty 183



Table 3 Associated data for five major crops in the Minqin County, Shiyang River Basin north-west of China (data in square brackets are lower and

upper bounds)

Target Unit
Grain crop Economic crop

Wheat Corn Sunflower Vegetables Cotton

Planting area hm2 4746.67 9853.33 11513.33 6373.33 5000.00

Yield per unit kg$hm–2 7251.91 10322.61 5566.05 59184.26 1800.02

Price per unit CNY$kg–1 [1.80, 2.60] [2.20, 2.66] [6.50, 12.00] [1.80, 2.90] [15.12, 20.30]

Cost CNY$hm–2 5850.00 9250.00 3598.00 21547.00 11340.00

Irrigation quota m3$hm–2 3900.00 4500.00 3450.00 5100.00 3300.00

Net income per unit area CNY$hm–2 [7203.44,
13004.97]

[13459.75,
18208.15]

[32581.35,
63194.65]

[84984.66,
150087.35]

[15876.36,
25200.49]

Penalty coefficient CNY$hm–2 [13297.19,
19098.72]

[20491.00,
25239.40]

[34737.60,
65350.90]

[88172.16,
153274.85]

[17938.86,
27262.99]

Minimum demand for
crops

t 37049.09 31500.00 20520.00 45990.00 15847.16

Fig. 7 Optimized planting area of five main crops in Minqin County, Shiyang River Basin north-west of China. (a) Wheat; (b) corn;
(c) vegetables; (d) sunflower; (e) cotton.
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five main crops. With the goal of guaranteeing food
security, the optimal results tend to allocate less land to the
two grain crops as these provide lower economic benefits.
The area planted to wheat should be increased and the area
planted to corn reduced depending on the prevailing
conditions. Likewise, the area planted to cotton should be
increased appropriately based on the actual condition to
meet the demand in the region, and the sunflower area
should be substantially reduced compared to the actual
condition because of its higher water consumption and
lower economic returns. In low flow years, it would be
appropriate to reduce the area planted to vegetables, as this
can significantly improve the overall economic benefit
with plenty of water. These results provide decision makers
the possible available water amounts and a wide variety of
support for decisions about planting area with different
amounts of available water to ensure the supply of basic
agricultural products in the region.
Figure 8 shows the comparison of the optimized

planting area with the prevailing conditions for the total
of the five selected crops at different flow levels. It is clear
that the total optimized planting area is less than the
existing area, that is, the total optimized planting area is
difficult to reach or exceed the existing area, which
effectively meets the requirements of The Shiyang River

Basin Key Governance Projects[22]. The mathematical
expectation of the economic benefits, i.e., the objective of
the ITSP model, is shown in Fig. 9. Compared to the
average total benefits of the five crops planted in 2014, the
optimized planting income clearly increases, which
successfully avoids the risk of low benefits.
For policy makers in Minqin County, broad decision

support is provided for various crop planting scenarios.
The optimal planting area of each crop in three possible
available water scenarios is provided in Fig. 7. Optimistic
policy makers prefer the planting area in high flow level
with higher risk of water shortage, and moderate policy
makers prefer medium flow level with medium risk, while
pessimistic policy makers prefer low flow level with lower
risk. The optimal crop area at each flow level is also given
as the interval form, which brings greater decision-making
options for policy makers. To guarantee enough grain
supply in the future, especially corn, policy makers should
attempt to provide subsidies or raise the purchase price of
grain crops because of their low economic benefits. If there
is enough water for irrigating crops, vegetables should be a
priority because of their shorter growth period and higher
benefits. However, the dynamics of market prices cannot
be ignored when formulating the crop planting policy.
With the above measures, water shortage problem can be

Fig. 8 Optimized total planting area of five crops in Minqin County, Shiyang River Basin north-west of China

Fig. 9 The total economic benefits mathematical expectation of five crops each year from 2015 to 2020 in Minqin County, Shiyang
River Basin north-west of China
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adequately adapted to stochastic changes of water avail-
ability.
Over all, these analyses indicate that the system, in

which the UMLR model and ITSP model are integrated,
not only avoids the poor prediction accuracy of the runoff
because of the uncertainties in the independent variable
prediction, but also simultaneously handles multiple
uncertainties of CPSO. This developed system can also
be applied to other practical problems related to water
resources management.

5 Conclusions

An UMLR model for runoff forecasting was developed.
UMLR has the advantage of (1) avoiding the transfer of
random error from independent to dependent variables,
which affects the prediction accuracy, (2) providing
probability for each possible water amounts. Based on the
results of the UMLR, the ITSP model is used for CPSO, and
it can (1) coordinate the risk and benefits in a framework,
(2) address uncertainties expressed as intervals and
randomness simultaneously, and (3) provide optimal-
planting structures under different amounts of available
water.
A case study of CPSO was provided to demonstrate the

applicability of the proposed system combing the UMLR
model for runoff forecasting with the ITSP model for
CPSO. The case study was to optimally allocate crop
planting area for selected crops with limited water
resources (base on the downstream runoff forecasting) in
order to obtain the maximum system net revenue. The
comparisons show that the system developed is effective
and suitable for arid regions.
This study attempted to improve the MLR model by

introducing interval and stochastic uncertainties, and thus
an UMLR model was developed. The predicted results of
the UMLR model were integrated as the inputs to an ITSP
model for CPSO. This system, which combines runoff
forecasting and CPSO, can also be applied to other similar
regions where the surface water is one of the major sources
of water availability, helping decision makers allocate
water resources more effectively. However, the UMLR
model can hardly predict long-term stream flow because of
the shortcomings of the MLR model. Fuzzy methods
dealing with uncertainties and other complex methods
have not been fully considered in CPSO but it would be
desirable to include them in further research.
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