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Abstract The health safety of methylglyoxal (MGO) has
been recognized as a key issue owing to its ultra-high
reactivity toward some key biomolecules such as amino
acids, proteins, DNA, sulfhydryl- and basic nitrogen-
containing compounds, including amino-bearing neuro-
transmitters. In this review, we have summarized the endo-
and exogenous sources of MGO and its accumulation
inside the body due to high intake, abnormal glucose
metabolism and or malfunctioning glyoxalases, and review
the debate concerning the adverse functionality of MGO
ingested from foods. Higher than normal concentrations of
MGO in the circulatory system and tissues have been
found to be closely associated with the production of
advanced glycation end products (AGEs), increased
oxidative stress, elevated inflammation and RAGE (AGE
receptors) activity, which subsequently progresses to a
pathological stage of human health, such as diabetes
complications, cancer, cardiovascular and degenerative
diseases. Having illustrated the mechanisms of MGO
trapping in vivo, we advocate the development of efficient
and efficacious MGO scavengers, either assisting or
enhancing the activity of endogenous glyoxalases to
facilitate MGO removal, or providing phytochemicals
and functional foods containing them, or pharmaceuticals
to irreversibly bind MGO and thus form MGO-complexes
that are cleared from the body.
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1 Introduction

Methylglyoxal (MGO), one of the dominant reactive
carbonyl species (RCS), can be generated both in vitro and
in vitro. Exogenously, particularly from the Maillard

reaction during food preparation and processing, MGO
can be derived from Schiff’s base and Amadori com-
pounds[1]. Therefore, MGO can commonly be detected in
various foods or beverages. Significant concentrations of
MGO can be found in high fructose corn syrup and
manuka honey from New Zealand[2–6]. On the other hand,
endogenously, MGO is mainly generated from the
glycolysis pathway. It can be spontaneously formed from
glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone
phosphate (DHAP)[7,8].
MGO, also known as 2-oxopropanal, is a highly reactive

carbonyl compound. The carbonyl groups of MGO can
actively react with amine groups from amino acids,
proteins or even DNAs to form the advanced glycation
end products (AGEs) and lead to carbonyl stress as well as
oxidative stress or even tissue damage. MGO also plays an
important role in the formation of color and flavor of foods
from the Maillard reaction[1].

2 Reactive carbonyl species

Reactive carbonyl species (RCS) are a class of byproducts
or intermediates from both exogenous and endogenous
oxidation. In general, nucleophilic compounds such as
amino acids or proteins can be attacked by RCS covalently
and then form harmful adducts. These harmful adducts are
named as advanced lipoxidation end products (ALEs) or
advanced glycation end products (AGEs) depending on the
original source of attacking RCS- from lipids or sugars,
respectively[9]. The adverse pathophysiological effects
which can be induced by the accumulation of RCS
compounds as well as the formation of ALEs and AGEs
have been described as carbonyl stress in the human
body[10]. Furthermore, RCS can be divided into three
different classes based on their different chemical
structures (Table 1): (1) α,β-unsaturated aldehydes (e.g.,
4-hydroxy-trans-2-nonenal and acrolein); (2) di-aldehydes
(e.g., glyoxal and malondialdehyde); (3) keto-aldehydes
(e.g., MGO and 4-oxo-trans-2-nonenal)[11].
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3 MGO generation in vitro

Exogenously, MGO are mainly generated from the
Maillard reaction and sugar autoxidation. In other words,
MGO can be formed from the degradation of mono-
saccharides (e.g., glucose) and Schiff base adducts.
The beginning of monosaccharide autoxidation is the

formation of ene-diol. This is caused by deprotonation of
carbon-2 of glucose and then the re-distribution of electron
density occurs between carbon-1 and carbon-2 or carbon-2
and carbon-3, respectively. Thus, glucose can be trans-
formed to 1,2-enol or 2,3-enol and following the formation
of 1-deoxyglucosone (1-DG) or 3-deoxyglucosone
(3-DG)[12]. MGO can be yielded from the fragmenta-
tion of 3-DG[1] (Fig. 1).
MGO can also be generated from the Maillard reaction

and the pathway is similar to glucose degradation but in the
presence of aldimine can be hydrolyzed into MGO
directly[1]. The condensation of the carbonyl group from
the reducing sugar with the amine group will lead to the
formation of Schiff base or aldimine. After rearrangement,
the Schiff base can be transformed to fructosamine or
3-DG. Both fructosamine and 3-DG can be degraded into
MGO[13] (Fig. 2).
MGO can be generated from the Maillard reaction at an

early stage and it plays important roles in color formation
and flavor generation, especially for aroma formation. For
example, MGO can be transformed into 1-hydroxy-2-
propanone through the Cannizzaro reaction, which can be
recombined with another MGO to generate 2,5-dimethyl-
4-hydroxy-3(2H)-furanone (DMHF, furaneol). DMHF is a
compound with intense caramel-like aroma as well as a key
aroma component generated from the Maillard reaction in
many processed foods. Therefore, as a flavor intermediate
in the Maillard reaction, MGO can recombine or react with
many other carbonyl compounds or amino acids to

generate various flavor compounds, such as pyridines,
pyrrolines, thiazoles, thiazolines, alkypyrazines, oxazoles
and oxazolines[1].

4 MGO metabolism in vivo

MGO is ubiquitous in our body because it is a metabolic
intermediate and can be generated from the glycolysis
bypass[14] (Fig. 3). The major pathway for MGO
generation is non-enzymatic and/or enzymatic phosphate

Table 1 classification and structures of RCS

Fig. 1 Oxidative formation of MGO from glucose
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elimination from glyceraldehyde 3-phosphate (G3P) and
dihydroxyacetone phosphate (DHAP), via the phosphate
enediolate intermediate. Besides glycolysis, there is a small
amount of MGO metabolized from fats or proteins in vivo
via acetone, threonine or aminoacetone as intermedi-
ates[8,15]. Although MGO has been confirmed as a
cytotoxic compound, its formation still has a controversial

role because the glycolysis bypass pathway may have
regulatory effects. Normally, G3P will be transformed to
pyruvate by the enzyme glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) but the increased cellular uptake
of carbohydrate compounds such as glucose, or the
abnormal glucose metabolism in diabetes, will lead to
the inhibition of the GAPDH enzyme, NADH abundance

Fig. 2 Formation of MGO in the Maillard reaction

Fig. 3 Metabolism of MGO in vivo
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and phosphate starvation. As a consequence, the MGO
pathway will be activated to relieve the glycolytic
burden[8,14,16–18]. In this case, the triose phosphate
isomerase will catalyze the transformation of G3P to
DHAP, synthesizing MGO[8].
The synthesis of MGO in vivo is inevitable either under

healthy or pathophysiological conditions. However, many
studies have proved the high toxicity of MGO in cells.
Among many different detoxifying pathways, the glyox-
alase system is the most important as the major detoxifying
mechanism of MGO or other reactive dicarbonyl com-
pounds in vivo to protect our cells from glycation or other
oxidative stress. Two enzymes, glyoxalase-1 (Glo-1) and
glyoxalase-2 (Glo-2) and one additional necessary cofactor
glutathione (GSH) are functioning coherently in the
biological system. At first, GSH can react with MGO
and yield hemithioacetal. Then, Glo-1 will catalyze
hemithioacetal to S-D-lactoylglutathione. Subsequently,
under the catalysis of Glo-2, S-D-lactoylglutathione will be
transformed to D-lactate, which can be excreted into urine
easily. Simultaneously, GSH will be recycled back to the
system (Fig. 3). But a high concentration of MGO in the
system comparing normal conditions or the inefficiency of
Glo-2, may lead to the depletion of free GSH and the
inability to recycle in the system. As a result, this will lead
to greater accumulation of MGO in cells, which will
induce glycation, increase oxidative stress and promote the
development of many degenerative conditions such as

diabetic complications, cardiovascular disease and Alzhei-
mer’s disease[19].

5 MGO and AGEs

MGO is a typical RCS compound which can lead to the
AGEs formation under physiological conditions. Due to its
high reactivity and ubiquitous generation, MGO has been
regarded as the most important source of AGEs. Compared
with glucose in glycation reactions, MGO can be as much
as 20000 times more reactive[20]. In particular, MGO reacts
with arginine residues, regarded as the most active
glycation. Other reactions, occurring to a lesser extent
than arginine, are with lysine, cysteine and tryptophan[21].
The reaction schemes are shown in Fig. 4.
The reaction between MGO and arginine will lead to the

formation of cyclic imidazolone adducts. Depending on
the nitrogen atoms involved in the cyclization as well as
the different environmental pH value, there are three
different structural isomers formed: Nd-(5-methyl-4-imi-
dazolon-2-yl)-L-ornithine (MG-H1), 2-amino-5-(2-amino-
5-hydro-5-methyl-4-imidazolon-1-yl) pentanoic acid (MG-
H2) and 2-amino-5-(2-amino-4-hydro-4-methyl-5-imida-
zolon-1-yl) pentanoic acid (MG-H3). These three isomers
are adducted in equilibrium. Because they can open and
give the carboxyethylarginine (CEA) adduct as well as
reverse back to re-cyclize, mutual interconversion can

Fig. 4 Major pathways for the formation of MGO-derived AGEs
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occur between the three isomer adducts. Furthermore, an
additional methylglyoxal can be added and yield either
THP (Nd-(4-carboxy-4,6-dimethyl-5,6-dihydroxy-1,4,5,6-
tetrahydropyrimidine-2-yl)-L-ornithine) or argpyrimidine
(Nd-(5-hydroxy-4,6-dimethylpyrimidine-2-yl)- l-
ornithine)[21–25].
MGO can react with lysine residues to form a

carboxylethyllysine (CEL) adduct with the aldimine as
an intermediate[26]. With the lysine dimer, MGO can be
adducted to MOLD (6-{1-[(5S)-5-ammonio-6-oxido-6-
oxohexyl]-4-methyl- imidazolium-3-yl}-L-norleucine).
With one lysine and one arginine residue, MGO can
form MODIC adduct (2-ammonio-6-({2–[4-ammonio-5-
oxido-5-oxopentyl) amino]-4-methyl-4,5-dihydro-1H-imi-
dazol-5-ylidene}amino)hexanoate)[27,28]. Additionally,
MGO can also react with cysteine residues to form
reversible hemithioacetal adducts, and with tryptophan
residues can generate β-carboline derivatives[29,30].
Because of the abnormal glycation or crosslinkage,

amino acids and proteins will be dysfunctional and lead to
inflammation, oxidative stress, tissue injury or cell
apoptosis[31]. As a result, the MGO-derived AGEs have
been associated with the development of many degen-
erative healthy conditions, such as cataracts, cardiovas-
cular disease, diabetic complications, nephrosis or brain
health problems[32]. For example, significant increases of
CML in cerebrospinal fluid has been detected in
amyotrophic lateral sclerosis patients[33] and CML level
in cortical neurons and cerebral vessels has been reported
to affect the severity of cognitive impairments among
people with cerebrovascular diseases[34].

6 MGO and oxidative stress

MGO is regarded as a toxic compound because not only
can MGO itself increase oxidative stress but also the AGEs
formed have the potential to lead to elevation of oxidative
stress[35]. Studies has shown that oxidative stress for
healthy rats can be increased significantly with oral
consumption of MGO[36]. Many other researchers have
revealed MGO-induced oxidative stress pathways. For
example, MGO can increase the formation of superoxide,
hydrogen peroxide, peroxynitrite and proinflammatory
cytokines in different cell types such as vascular smooth
muscle cells, rat hepatocytes, neutrophils, and platelets
among others[37–40]. MGO can also promote the activity of
several pro-oxidant enzymes such as NADPH oxidase[37].
Additionally, MGO can amplify the oxidative stress by
reducing several antioxidants in vivo such as GSH,
glutathione peroxidase and glutathione reductase[41,42].
Furthermore, the formation of AGEs will not only affect

the function of proteins and DNAs, it will also activate the
membrane receptors, typically RAGE (receptors of AGEs),
which can trigger specific intracellular signals[35]. RAGE
is water soluble and has been proposed as the most

important receptor for AGEs because it can recognize two
major types of AGEs, CML adducts and imidazolones,
through specific regions and then activate NF-kB[31]. As a
result, elevation of oxidative stress will occur and
subsequently provoke positive inflammatory feedback,
apoptosis, macrophage, platelet activation, thrombosis or
cause the progression of vascular complications[8].

7 MGO and type-2 diabetes

As previously mentioned, the increased consumption of
carbohydrates, like glucose, or abnormal glucose metabo-
lism in diabetes will activate the MGO pathway in
glycolysis and generate more MGO compared with normal
conditions. Therefore, the MGO concentration in diabetic
patients’ body will be 2–6 times higher than healthy
people[43]. This can be one of the reasons why diabetic
patients normally suffer with diverse complications, such
as cataracts, cardiovascular disease, nephrosis or neuro and
brain health problems[7].
On the other hand, an overwhelming amount of MGO in

vivo will also induce type-2 diabetes or its complications.
Insulin resistance and β-cell loss are the hallmarks of type-
2 diabetes[8]. Many studies have focused on the patholo-
gical effects of MGO on diabetes and the major effect is
related to insulin. Insulin is the peptide hormone produced
from pancreatic β-cells regulating glucose homeostasis.
The highly reactive carbonyl compound MGO can react
with the N terminus and arginine residue of human insulin.
The formation of MGO-insulin adducts will affect insulin–
mediated glucose uptake, impair autocrine control of
insulin release from β-cells and decrease hepatic clearance
of insulin from liver cells[44,45]. The glycation of insulin
will also damage the ability of insulin to bind or activate its
receptor and probably lead to insulin resistance[35]. Other
possible pathological effects of MGO with type-2 diabetes
include effects on glucose transporter, pancreatic β-cell
anion channel, hemogloblin, and endothelial cells among
others[8].

8 MGO and brain health

MGO can be generated spontaneously and continuously in
all mammalian cells. Due to its high reactivity and
oxidative ability, the accumulated MGO can attack
proteins and DNAs or other biomolecules to form AGEs
and cause the irreversible serious loss of function or
damage to organs[46]. However, on the other hand, brain
has the high energy needs and glucose is the major energy
source for the brain. As a by-product of glycolysis, MGO
generation and accumulation will be increased as the
glycolysis rate elevated[19]. Therefore, it is not hard to
understand that the amount of MGO in cerebrospinal fluid
(CSF) will be five to seven times higher than in plasma.
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Briefly, MGO itself may have adverse effects on neurons
directly because of depolarization, ROS production or as a
result of cell apoptosis[47]. What is more, glycation or
carbonyl stress have been involved in neurological and
neurodegenerative disorders[48]. For example, MGO may
promote abnormal protein aggregation due to crosslinkage
and induce oxidative stress. Recently, the relationship
between MGO and brain health problems is attracting
more attention.
The role of MGO in Alzheimer’s disease (AD) has been

studied widely. The studies revealed the higher concentra-
tion of MGO in CSF of diabetic patients, the pathogenesis
of AD might be accelerated. Extracellular amyloid-β (Aβ)
and intracellular neurofibrillary tangles (NFTs) are two
distinct features of AD. These two protein aggregations are
more stable and long-lived compared with other normal
proteins, thus they are more readily glycated. After
glycation, the AGE adducts, for example β-amyloid
plaques, will be more insoluble and protease-resistance[21].
Another study has shown that the quantity of AGE adducts
in AD brains are three times higher than in healthy brain,
and the AGE accumulation may also promote the
aggregation of additional amyloids[49]. Additionally, the
Aβ AGEs can also be recognized by RAGE. As a result,
the oxidative stress, inflammation, amyloidosis and the
neurotoxicity will be increased for microglia, the blood
brain barrier and neurons[50,51].
There are also many studies focused on glycation and

amyotrophic lateral sclerosis (ALS) and the results showed
that the copper–zinc enzyme superoxide dismutase
(SOD1), which can catalyze the quenching of superoxide
radicals, is susceptible to be glycated because of several
lysine and arginine residues in the primary structure of the
enzyme. CML and non-CML AGEs are found in the
anterior horn motor neurons and microglia in the spinal
cord of ALS patients[48,52,53]. Data showed there is no
increase of AGEs in multiple sclerosis (MS) patients
compared with healthy people, but RAGE receptors in MS
patients and animal models has been upregulated[48,54,55].
In this century, MGO and its glycation have been

suspected to be involved with Parkinson’s disease (PD).
Similar to Aβ and NFTs for AD, Lewy bodies are
hallmarks in PD pathology. Studies showed the Lewy
bodies can be modified to AGEs which then alter RAGE
expression[48,56,57], which may lead to dopaminergic
neurons destruction.

9 MGO trapping agents

The accumulation of MGO in cells will lead to carbonyl
stress and AGEs formation or even induce degenerative
health conditions especially for diabetes mellitus. Until
now, there are several available pharmaceutical AGE
inhibitors that can be used to trap MGO or prevent AGE
formation and relief the diabetic complications. One

example is aminoguanidine, a nucleophilic hydrazine
compound which can react with MGO rapidly and inhibit
AGEs formation and other related degenerative complica-
tions[32,58].
Although pharmaceutical compounds can trap MGO or

inhibit AGEs formation significantly, their adverse side
effects have limited their clinical usage[7]. Many natural
phenolic compounds show significant effects in trapping
MGO and some flavonoids have shown significant
inhibitory effects on AGE formation which is mediated
by MGO. For example: luteolin, rutin, ( – )-epigallocate-
chin-3-gallate (EGCG) and quercetin can inhibit 82.2%,
77.7%, 69.1% and 65.5% AGE formation, respectively[59].
From this perspective, some flavonoids have already been
shown to trap MGO efficiently and alleviate AGE
formation. Under physiological conditions (pH 7.4,
37°C), EGCG from tea can trap over 90% MGO in
10 min and form 8-mono-MGOEGCG, 6-mono-
MGOEGCG and 6,8-di-MGOEGCG adducts as the
products based on the different ratio of MGO and EGCG
in the reaction conditions[60]. Similarly, genistein from
soybean, quercetin from diverse plants and phloretin or
phlorizin from apple can also trap MGO effectively and
form both mono-MGO adducts or di-MGO adducts based
on different reaction reagents under controlled physical
conditions (pH 7.4, 37°C). More than 80% of MGO can
be trapped by genistein within 4 h and the trapping
efficiency can be as high as 97.7% after 24 h[61]. Quercetin
can trap 80.1% of MGO after 1 h[62]. More than 80%MGO
can be trapped by phloretin within 10 min and more than
70% MGO can be trapped by its glucoside phloridzin
within 24 h[63]. Although some flavonoids or phenolic
compounds has shown significant ability in scavenging
MGO, these studies have been mainly focused in vitro. The
ability of genistein to trap MGO has been studied in vivo.
In vivoMGO trapping condition is much more complicated
because of several factors: (1) systemic bioavailability of
flavonoids; (2) metabolism and activities of their metabo-
lites; (3) oxygen pressure; (4) pH; (5) presence of other
endogenous and exogenous compounds and so on. Based
on these results, only mono-MGO adducts of genistein
were found. Both mono-MGO genistein adducts and
mono-MGO genistein metabolite adducts were found in
mice urines. Except for two genistein metabolites, 6-
hydroxygenistein and 8-hydroxygenistein, all other meta-
bolites of genistein can be adducted by MGO and found in
the mice urine samples, showing that genistein and its
metabolites which share the same A ring structure can trap
MGO[64].
Besides studying the MGO trapping ability of certain

specific flavonoids or phenols, some research has focused
on the comparison of different flavonoids in parallel
experiments between compounds with similar structures in
order to study the MGO scavenging mechanism. One such
study focused on 20 different single benzene phenolic
structure compounds which were incubated with MGO
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seperately in the ratio of 1:1 under physiological condi-
tions. The conclusion was that mono-hydroxyl and di-
hydroxyl benzene compounds are not efficient at trapping
MGO. Benzenetriols, however, can trap MGO efficiently.
The position of a carboxylic group on the benzenetriol
structure can play a key role in the reaction[65]. Another
study was more focused on the flavonoids (quercetin,
luteolin, epicatechin, genistein, daidzein, apigenin and
phloretin). Five typical phenolic compounds (gallic acid,
phloroglucinol, pyrogallol, pyrocatechol, and resorcinol)
were investigated in the research to simplify the influential
factors. The results showed pyrogallol has the highest
MGO-trapping ability with 90% of MGO trapping in 24 h.
The MGO-trapping ability sequence of other compounds
investigated is phloroglucinol (60.5%), resorcinol (31.6%),
pyrocatechol (21.8%) and gallic acid (14.9%). This
research revealed that 1,2,3-trihydroxybenzen (pyrogallol)
has higher MGO-trapping ability than other 1,2-dihydrox-
ybenzene and 1,3-dihydroxybenzene. Substitution at
position 5 of pyrogallol decreased the trapping ability
which means the position 5 is the active site of pyrogallol
to trap MGO. Comparisons of phloroglucinol and
resorcinol comparison as well as genistein (90%) and
daidzein (54.5%) show that the A ring is crucial for MGO
trapping and the hydroxyl group on C-5 in the A ring is
very helpful for MGO-trapping abilities of flavonoids. On
the other hand, the comparison between quercetin (90%
per 24 h), luteolin and (90% per 24 h) and epicatechin
(85% per 24 h), suggests that the double bond between C-2
and C-3 can promote the MGO trapping ability of
flavonoids. The other conclusion from this study was
that the number of hydroxyl groups on B ring does not
influence the MGO-trapping abilities significantly for
flavonoids[66].

10 Conclusions

MGO, one of the reactive carbonyl compounds, has
attracted more and more attention because of its potential
close relationship with many degenerative healthy pro-
blems. MGO can actively react with the amine group of
amino compounds and form AGEs as the products.
Furthermore, the amount of MGO is about 2–6 times
higher in diabetic patients’ bodies compared to healthy
people, which is one reason why diabetic patients suffer
with different complications such as cataracts, cardiovas-
cular disease and nephrosis. In this decade, more and more
research studies have focused on the relationship between
MGO and brain healthy problems like AD and PD. For the
AD, many studies showed the higher concentration of
MGO in CSF for diabetic patients may accelerate the AD
progress. For example, MGO may actively glycate
extracellular amyloid-β (Aβ) to β-amyloid plaques which
are more insoluble and protease-resistance. For the PD, the
epidemiological studies also showed that diabetic patients

are more frequently diagnosed with PD compared with
healthy people, which has raised the suspicion that the
higher amount of MGO may also increase Parkinson’s
disease.
Since MGO is a common Maillard reaction intermedi-

ate, it exists in daily processed foods. It is still not
established whether dietary MGO will cause any safety
issue and this remains an urgent issue for food safety. In
addition, it is well-known that certain phytochemicals such
as flavonoids may trap MGO in vitro, and they may be
used to reduce the amount of potential toxic MGO in
commonly processed foods.
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