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Abstract Livestock have undergone domestication and
consequently strong selective pressure on genes or
genomic regions that control desirable traits. To identify
selection signatures in the genome of Chinese Rongchang
pigs, we generated a total of about 170 Gb of DNA
sequence data with about 6.4-fold coverage for each of six
female individuals. By combining these data with the
publically available genome data of 10 Asian wild boars,
we identified 449 protein-coding genes with selection
signatures in Rongchang pigs, which are mainly involved
in growth and hormone binding, nervous system develop-
ment, and drug metabolism. The accelerated evolution of
these genes may contribute to the dramatic phenotypic
differences between Rongchang pigs and Chinese wild
boars. This study illustrated how domestication and
subsequent artificial selection have shaped patterns of
genetic variation in Rongchang pigs and provides valuable
genetic resources that can enhance the use of pigs in
agricultural production and biomedical studies.
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1 Introduction

Genome sequencing and assembly for European domestic
Duroc pigs has greatly improved the genetic resources
available for this important livestock species[1], and has
enhanced the potential of this pig as a model organism for
biomedical studies. Biological adaptability has enabled
development of over 730 current pig breeds or lines that
are distributed globally across a wide range of environ-

ments[2]. Modern domestic pigs have undergone strong
genetic selection in specialized commercial populations;
this has led to remarkable phenotypic changes and genetic
adaptation, which makes these breeds an important world
heritage and scientific resource for comparative genomic
studies[3,4]. Recently, a list of ‘domestication genes’ has
been compiled for silkworms[5], chickens[6], pigeons[7],
rabbits[8], dogs[9], cattle[10] and pigs[11–14] by genomic
sequencing. Rongchang pigs, a Chinese indigenous breed
raised only in Southwest China with a center of production
in the Sichuan basin, have been intensively selected
for efficient accumulation of muscle and highly prized
pork traits (i.e., juiciness, flavor, tenderness, pink hue and
heavy marbling). The phenotypes of Rongchang pigs,
characterized by their average-size head, concave and
wrinkled face, well-developed limbs, concave back, tilted
haunch and a big belly, are remarkably different from wild
boars.
To identify genomic selection signatures in Rongchang

pigs, we performed whole-genome resequencing of six
female Rongchang pigs (about 170 Gb in total) and
evaluated the genomic regions under selection.

2 Materials and methods

2.1 Animals and genome sequencing

Genomic DNAwas extracted from the blood of six female
Rongchang pigs from a nucleus herd in Chongqing
Municipal Breeding Pig Farm, with no direct and collateral
blood relationship within the last three generations among
the individuals selected. Sequencing was performed on a
HiSeq 2000 platform (Illumina, San Diego, CA, USA). In
addition, we downloaded genomic data of 101 pigs
worldwide from the EMBL-EBI database (http://www.
ebi.ac.uk/) under accession number ERR173 and the NCBI
sequence read archive (SRA) under accession number
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SRA065461, which included 30 European domestic pigs,
20 Chinese domestic pigs, 30 Tibetan wild pigs from
China, 10 Asian wild boars, six European wild boars, four
other species in the genus Sus, and an African
warthog[1,11,15,16].

2.2 SNP calling

We first filtered low-quality paired reads, which mainly
resulted from base-calling duplicates and adapter conta
mination. The qualified paired-end reads were mapped to
the pig reference genome assembly (Sscrofa10.2)[1] using
BWA software[17]. After alignment, we performed SNP
calling on a population-scale for two groups (56 domestic
pigs and 51 other pigs as detailed above and an African
warthog) using a Bayesian approach implemented in
SAMtools[18]. The genotype likelihoods from reads for
each individual at each genomic location were calculated,
and the allele frequencies were estimated. Only the high-
quality SNPs (coverage depth≥4 and£1000, RMS (root
mean square) mapping quality≥20, distance of adjacent
SNPs≥5 bp and missing ratio of samples within each
group< 50%) were kept for the subsequent analysis.

2.3 Functional enrichment analysis

Functional enrichment analysis of Gene Ontology (GO)
terms, pathway, and InterPro domains were identified
using the DAVID web server[19]. Genes were mapped to
their respective human orthologs, and the lists were
submitted to DAVID for enrichment analysis of the
significant overrepresentation of GO biological processes
(GO-BP), molecular function (GO-MF) terms, and KEGG
pathway and InterPro categories. In all tests, all the known
genes were assigned as the background, and P values (i.e.,
EASE score), which indicated significance of overlap
between various gene sets, were calculated using Benja-
mini-corrected modified Fisher’s exact test. Only terms
with P< 0.05 were considered significant.

2.4 Phylogenetic analyses

Phylogenetic relationships were inferred using the package
TreeBeST (http://treesoft.sourceforge.net/treebest.shtml)
under the p-distance model using SNPs at a population-
scale. We performed principle component analysis (PCA)
with population-scale SNPs using EIGENSOFT4.2[20].
The significance level of eigenvectors was determined
using the Tracy-Widom test[20].

2.5 Identification of selected regions

A sliding window approach (100-kb windows with 10-kb
steps) was applied to quantify the pooled heterozygosity
(Hp), genetic differentiation (FST), and selection statistics
(Tajima’s D, which is a measure of selection in the

genome) between Rongchang pigs and Asian wild boars.
To detect regions with significant selective sweep
signatures, we Z-transformed the resultant distributions
of Hp scores and FST values, and simultaneously selected
windows with low Z(Hp) (< – 2) in Rongchang pigs and
high Z(FST) (> 2) as genomic regions with strong selective
sweep signals that could harbor genes under selection.

3 Results and discussion

3.1 Sequencing and SNP calling

We generated a total of about 170 Gb of paired-end reads,
of which 85% (144.43 Gb) of high-quality reads were
mapped to the pig reference genome assembly
(Sscrofa10.2) with about 6.4-fold coverage for each
individual (Table S1). In addition, we downloaded about
1037 Gb of genomic data from 101 publically available pig
genomes in the EMBL-EBI database and about 659 Gb in
the NCBI SRA database[1,11,15,16] (Table S2).
We performed SNP calling on a population-scale and

identified 10.13 M SNPs from 107 individuals (Table S3).
We then separately pooled and obtained SNP sets for each
of two groups, which included 6.74 M from the 56
domestic pigs and 7.76 M from the 51 other individuals.
We identified 6.50 M SNPs from six Rongchang pigs, of
which 47205 were coding SNPs included 15662 non-
synonymous nucleotide substitutions (15540 missense,
102 stop-gain and 20 stop-loss mutations) that were
detected in 6910 genes (Table S4). These nonsynonymous
SNP-containing genes in Rongchang pigs were mainly
related to the G-protein coupled receptor protein signaling
pathway (97 genes, P = 2.14 � 10–10), especially sensory
perception of chemical stimulus (68 genes, P = 1.02 �
10–9), smell (61 genes, P = 1.02 � 10–8), olfactory
transduction (56 genes, P = 1.92 � 10–8) and olfactory
receptor (59 genes, P = 5.73 � 10–8). Pigs have one of the
largest repertoires of functional olfactory receptor genes
that encode the G-protein coupled receptor superfamily[21].
In previous reports[1], similar rapid evolution of olfactory-
related genes with extensive nucleotide variation have
been found, reflecting the importance of smell in this
scavenging animal and other odor-driven behaviors, such
as individual recognition and mating preferences[22,23].

3.2 Genome-wide selective sweep signals

It has been well documented that from about 1000000
years ago, European and Chinese pigs diverged from each
other, originating independently from different subspecies
of ancestral wild boars around 10000 years ago[1,16,24]. To
examine relatedness between Rongchang pigs and other
pigs, we constructed a neighbor-joining tree (Fig. 1a), and
conducted PCA (Fig. 1b; Table S5) using genomic SNPs,
both of which revealed a deep phylogenetic split between
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European and Asian pigs. To accurately detect genomic
footprints left by selection in Rongchang pigs and avoid
genetic differences that resulted from geographic isolation
of Europe from China, we specifically measured the
genome-wide variations and frequency spectrum based on
8.32 M SNPs between six Rongchang pigs and 10 Asian
wild boars (Table S6).
In total, 229772 100-kb windows with 10-kb steps

across the pig genome contained≥100 SNPs within each
window and covered 84.4% of the genome and were used
to identify the regions that may have been affected by
selection during domestication. We empirically chose to
set the thresholds at Z(Hp)Rongchang< – 2 and Z(FST)> 2,
because they represent the extreme tails of the distributions
and are hence likely enriched for strong selective sweep
signals along the genome, which could harbor genes that
underwent a selective sweep. From this we identified a
total of 44.86 Mb of genomic data (1.61% of the genome
containing 449 genes) with strong selective sweep signals
in Rongchang pigs (Fig. 2a), which also exhibited
significant differences (P< 10–16, Mann–Whitney U test)
based on Z(Hp), Z(FST), and Tajima’s D when compared
with the genomic background (Fig. 2b).
We also constructed a phylogenetic neighbor-joining

tree (Fig. 2c) and performed PCA (Fig. 2d) exclusively
using the SNPs in regions with strong selective sweep
signals. Although Rongchang pigs and Asian wild boars
are genetically close, based on the 8.32 M SNPs across the
whole genome (Fig. 1), they form two distinct clusters with
respect to these SNPs (0.62 M, 7.45%), which are
potentially under adaptive evolution resulting from
industrial agriculture (Fig. 2c, Fig. 2d).

The 449 genes embedded in selected regions were
analyzed using DAVID to examine whether these domestic
genes were enriched for specific functional gene categories
(Table 1). Our findings coincide with previous reports on
genes related to pig domestication[1–4,11–15]: genes related
to growth and hormone binding, which included seven
terms, were observed to be under strong selective sweep in
Rongchang pigs, and may have contributed to the rapid
growth and enhanced muscle development of domestic
pigs.
Of note, 10 genes putatively under selection that are

related predominantly to nervous system development,
most with a single allele in Rongchang pigs, include
CNTN4, DLL3, GHSR, LHX5, MAP1B, MBP, METRN,
NUMBL, TNFRSF12A and REST, several of which affect
brain development, neuronal functions, and behavior
(Fig. 3). This result supports the view that altered behavior
(such as reduced fear, higher levels of adult play, and
tameness or aggression toward humans), in addition to the
obvious dramatic changes in appearance and physiology,
was also important during domestication, and that
mutations affecting developmental genes may underlie
these changes[25–29]. In addition, four genes (CYP2A6,
GMPS, UPB1 and UPP2) in Rongchang pigs exhibited
strong selective sweep signatures enriched for drug
metabolism (Fig. S1). Given that alterations in these
genes are associated with a variety of drug metabolism
associated-diseases[30], their positive selection may be
attributed to constant exposure of domestic pigs in modern
industry to much higher dosages of chemicals/drugs and an
increased number of environmental xenobiotics, which
could have accelerated evolution of drug metabolism.

Fig. 1 Phylogenetic relationship of Rongchang pigs. (a) Neighbor-joining phylogenetic tree of pig breeds. The scale bar represents
p-distance; (b) two-way principle component plot of pig breeds. The fractions of the variance explained are 12.2% and 5.74% for
eigenvectors 1 and 2, respectively, with a Tracy-Widom P value< 10–78 (Table S5).
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Fig. 2 Genomic regions with strong selective sweep signals in Rongchang pigs. (a) Genome-wide distribution of pooled heterozygosity
values (Hp), genetic differentiation (FST), and corresponding Z transformations (Z(Hp)) and Z(FST), which were calculated in 100-kb
windows with 10-kb steps (n = 229772, contain≥100 SNPs). Data points located to the right of the vertical line (where Z(FST) is 2) and
below the horizontal line (where Z(Hp) is –2) were identified as selected regions in Rongchang pigs (red points). m, mean; s, standard
deviation; (b) violin plot of Z(Hp)Rongchang, Z(FST), and |Tajima’sDRongchang pigs – Tajima’sDAsian wild boars| in genomic regions with strong
selective sweep signals for Rongchang pigs compared with the whole genome. Out of 229772 100-kb windows that contained≥100 SNPs
with 10-kb steps across the pig reference genome (gray violin), 1852 windows were picked out as regions with strong selective sweep
signals (green violin). Each violin with the width depicting a 90°-rotated kernel density trace and its reflection. Vertical black boxes denote
the interquartile range between the first and third quartiles (25th and 75th percentiles, respectively) and the white point inside denotes the
median. Vertical black lines denote the lowest and highest values within a 1.5 times interquartile range from the first and third quartiles,
respectively. The statistical significance was calculated by the Mann–Whitney U test; (c) phylogenetic tree (scale bar represents
p-distance); (d) two-way principle component plot of Rongchang pigs (n = 6) and Asian wild boars (n = 10) based on SNPs in regions with
strong selective sweep signals with 25.0% of variance explained for eigenvector 1, (P = 0.030, Tracy-Widom test) and 13.7% for
eigenvector 2 (P = 0.277, Tracy-Widom test).
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Table 1 Functional gene categories enriched for genes affected by selection in Rongchang pigs

Category Term description Involved gene number P value

GO-BP:0010648 Negative regulation of cell communication 13 0.007

GO-BP:0007242 Intracellular signaling cascade 40 0.011

GO-BP:0048009 Insulin-like growth factor receptor signaling pathway 3 0.015

GO-MF:0017046 Peptide hormone binding 4 0.018

GO-MF:0042562 Hormone binding 5 0.019

GO-MF:0005158 Insulin receptor binding 4 0.020

GO-BP:0051960 Regulation of nervous system development 10 0.022

GO-BP:0032868 Response to insulin stimulus 6 0.033

Fig. 3 Genes related to nervous system development that show selective sweep signatures in Rongchang pigs. (a) Z(Hp), Z(FST), and
Tajima’sD values are plotted using a 10-kb sliding window. Genomic regions located above the upper horizontal dashed red line (Z(FST) =
2) and below the lower horizontal dashed black line (Z(Hp) = –2) were considered regions with strong selective sweep signals for
Rongchang pigs (beige regions). Genome annotations are shown at the bottom (black bar: coding sequences, blue bar: genes). The
boundaries of genes related to nervous system development are marked in red; (b) the gene trees for 10 genes related to nervous system
development of 10 Asian wild boars and six Rongchang pigs.
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4 Conclusions

This study examined the genetic relationships among
Chinese Rongchang and other pigs, and uncovered genetic
footprints of domestication and selection that provide an
important resource for further improvements of this
important livestock species. We envision that the data
presented here will provide a representative example on
which to base future deciphering of genomic footprints left
by livestock domestication and selection.

Accession codes The genome resequencing reads of Rongchang pigs have
been deposited into the NCBI SRA database under the accession SRP034675.

Supplementary materials The online version of this article at http://dx.
doi.org/10.15302/J-FASE-2017161 contains supplementary materials
(Tables S1–S6; Fig. S1).
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