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Abstract Skeletal muscle development is a complex
multi-process trait regulated by various genetic factors.
The chicken embryo is an ideal model system for studying
skeletal muscle development. However, only a small
proportion of the genetic factors affecting skeletal muscle
development have been identified in chicken. The aim of
this review is to summarize recent knowledge about the
genetic factors involved in the regulation of skeletal
muscle development in the chicken, such as gene
polymorphisms, epigenetic modification, noncoding
RNAs and transcription factors, which can influence
skeletal muscle development at the genome, epigenome,
transcriptome and proteome levels. Research on the
regulation of skeletal muscle development in chicken is
not yet comprehensive and most of the candidate genes and
single nucleotide polymorphisms related to chicken
muscle growth remain to be verified in experimental
studies. In addition, the data derived from transcriptome
sequencing and genome-wide association studies still
require further investigation and analysis and comprehen-
sive studies on the regulation of chicken skeletal muscle
development will continue as a major research focus.
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1 Introduction

Skeletal muscle is a form of striated muscle tissue,
distributed mainly in the limbs, chest and hips of
vertebrates. Most skeletal muscles are attached to bones
by tendons, and are important for movement, strength,

metabolism and body posture of the animal. The skeletal
muscle is made up of thousands of muscle fibers, each
containing multiple nuclei, which come from the fusion of
myoblasts. Skeletal muscle development is a complex trait,
influenced by genetic regulation and environmental
cues[1,2]. The developmental process from muscle pre-
cursor cell to muscle fiber formation is regulated by
various genetic factors, including gene polymorphism,
transcription factors, DNA methylation and noncoding
RNAs[3–7]. These genetic factors cooperate with each other
to ensure the normal development of skeletal muscle.
Skeletal muscle development is a multi-step process that

includes myofiber formation and hypertrophy. The forma-
tion of myofiber occurs mainly in embryogenesis. During
the embryonic stage, the myofibers are generated by the
following four major processes: myogenic precursor
differentiation from somites, myoblast development from
myogenic precursors, myoblast proliferation and fusion to
form the multinucleated myotubes, and finally maturation
of myotubes into myofibers[3,8]. After myofibers are
formed, they undergo hypertrophy at the postnatal stage.
This stage comprises protein turnover, satellite cell
proliferation, differentiation and fusion with myofibers to
stimulated the hypertrophy of myofibers[9]. In addition to
these complex cell developmental processes during
myofiber formation and hypertrophy, the fine-tuned
regulation of numerous myogenic genes is also important
for the development of skeletal muscle.
Members of three families of transcription factors have

important roles during skeletal muscle development. The
paired box proteins, Pax-3 and Pax-7, are essential for
muscle precursor cell proliferation, myoblast determina-
tion and the specification of myogenic satellite cell[10–14].
The myogenic regulatory factor family includes MyoD,
myogenin, myogenic factor 5 and myogenic regulatory
factor 4, which are muscle-specific transcription factors
that are indispensable for myoblast determination and
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differentiation[15–17]. The myocyte enhancer factor 2
family of transcription factors includes MEF2A, -B, -C
and-D, which function mainly in myoblast differentiation
and muscle-specific gene transcription[18–20]. These
three transcription factor families cooperate with each
other to facilitate myogenesis. In addition to the three
transcription factor families, many other genetic factors
can also regulate skeletal muscle development. DNA
polymorphism in these muscle development-related genes
can result in abnormal muscle growth[7,21]. MicroRNAs
(miRNAs) have been found to have an important
regulatory role during skeletal muscle development[3,22].
The long non-coding RNAs and the circular RNAs also
regulate myogenesis through their own regulatory
mechanisms[23,24]. Epigenetic modification, such as his-
tone modifications and DNA methylation, can also
control skeletal muscle development by epigenetic
mechanisms[5,6,25]. Studies on all of the above genetic
factors have become well established in research on
myogenesis regulation. However, the precise regulatory
mechanisms and networks involved in skeletal muscle
development still need to be elucidated and more and more
genetic factors involved in skeletal muscle development
remain to be explored.
Myogenic proteins are highly conserved among mam-

malian and avian embryos[26] and many major discoveries
in muscle development depend on avian model systems,
especially the chick[27]. The chicken is the first model
organism to be used and is excellent for developmental
investigations[28,29]. Additionally, the skeletal muscle of
chicken is an important food source for humans. However,
the genetic regulation of chicken skeletal muscle develop-
ment is still poorly understood. In this review, the genetic
factors regulating the programs of chicken skeletal muscle
development are summarized, and the recent progress in
the investigation of chicken myogenic-related regulatory
factors newly identified in our laboratory are discussed.

2 DNA polymorphisms affecting chicken
skeletal muscle development

DNA polymorphisms are a useful tool for finding genetic
markers related to chicken phenotypic traits. In this
section, single nucleotide polymorphisms (SNPs) that
related to chicken skeletal muscle development are
summarized and discussed. Most of these SNPs are
detected by GWAS, direct genome sequencing and/or
SNP genotyping technologies. Since growth traits can to
some extent also explain or reflect the status of skeletal
muscle development, and skeletal muscles that attached to
the trunk, wings and hips have been used by researchers for
estimating bodyweight, in this part we also discussed the
SNPs that are significantly associated with several
production traits related to chicken bodyweight.

2.1 Single nucleotide polymorphisms in the myogenic
genes related to chicken skeletal muscle performance

Many genes, called myogenic genes, from three families of
transcription factors, myostatin (MSTN) and growth axis
related genes have been found to be involved in skeletal
muscle development. These myogenic genes are ideal
candidate genes for genetic marker screening for broiler
breeding. Many polymorphisms have been found to be
significantly associated with skeletal muscle growth traits
through the screening of genetic markers of myogenic
genes (Table 1). These SNPs can be located in the 5′UTR,
intron, exon and 3′UTR region of the gene. SNPs in the 5′
UTR or intron may influence gene expression, or may be in
linkage with some other causative polymorphisms that
influences skeletal muscle growth and development[36]. In
addition, a synonymous mutation, which does not cause an
amino acid change, can also affect gene function and
muscle development[44]. SNPs at theMSTN gene promoter
might result in the downregulation of this gene, which is a
negative regulator of skeletal muscle development[42].
However, the mechanism whereby these SNPs affect
chicken skeletal muscle development remain unclear. The
major task for the future is to find the relationship between
genotype and phenotype. Further exploration of the
molecular mechanism underling this relationship is still
needed.

2.2 Genome-wide association studies reveal single nucleo-
tide polymorphisms significantly related to chicken muscle
growth traits

Skeletal muscle development is a complex trait that can be
regulated by multiple genetic factors. As a useful method
for discovering complex trait-related gene loci or genomic
regions, genome-wide association study (GWAS) has
yielded more reproducible associations than many other
approaches[49]. Five SNPs have been found to be
significantly associated with the chicken muscle growth
trait in the 1.5 Mb karyopherin subunit alpha 3- forkhead
box O1 a (KPNA3-FOXO1A) region at chicken chromo-
some 1 (GGA1), which were detected by using GWAS in a
chicken F2 resource population (White Recessive Rock �
Xinghua)[50]. One of the 5 SNPs, rs15497910, is
significantly associated with breast and leg muscle weight,
indicating its potential role in the regulation of skeletal
muscle development. However, no studies have reported
indicating that the KPNA3 gene, which is the nearest gene
to rs15497910, is able to influence muscle development in
any species. So rs15497910 might influence chicken
muscle growth trait by another mechanism that is
independent of the function of KPNA3 gene. The other
two SNPs, rs13973515 and GGaluGA055359, were
significantly associated with average daily weight gain at
15 to 28 d and wing weight, respectively. In addition, the
nearest gene to these two SNPs is FOXO1A, which is an
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important transcription factor during skeletal muscle
development[51–53]. The question whether and how these
two SNPs can influence expression or function of
FOXO1A needs further study.
Two other GWAS of a chicken F2 resource population

derived from the reciprocal crosses between slow- and fast-
growing chicken breeds, have also identified some loci or
genes related to muscle growth[54,55]. Unlike the results
described above, these two studies showed that many
SNPs on GGA4 are significantly associated with chicken
growth traits. The genes near significant SNPs, such as
ligand dependent nuclear receptor corepressor-like protein
1, LIM domain binding 2 and microtubule-associated
protein tau, have lower expression in breast muscle of
slow-growing chickens compared to fast-growing chick-
ens, indicating their potential roles in the regulation of
muscle development[54]. By GWAS of local chicken
breeds, a 0.65 Mb region on GGA3 was identified as
associated with breast muscle weight (BrW) and breast
muscle percentage (BrP)[56]. The gap junction protein

alpha 1 (GJA1) gene which is located in this region may be
a functional gene for skeletal muscle development, because
the expression of this gene was upregulated with the
increase of breast muscle weight across development[56].
Additionally, four SNPs (GGaluGA225255, Gga_rs16-
287013, Gga_rs14366866 and Gga_rs14366948) located
near GJA1 are significantly associated with BrW and BrP.
Another GWAS, using Jinghai yellow chickens, found that
15 SNPs are significantly associated with five carcass
traits[57]. However, there has been no SNP identified by
GWAS that is significantly associated with breast muscle
weight or leg muscle weight, which are more representa-
tive of skeletal muscle development.
Even though increasing numbers of SNPs, genes and

regions have been found to be associated with chicken
skeletal muscle development by GWAS, none of the new
candidate genes has been verified to be involved in skeletal
muscle development. The significant associated loci
identified in the genome by these studies are very
different, indicating that the loci associated with muscle

Table 1 Single nucleotide polymorphisms located in myogenic genes associated with chicken skeletal muscle development

Polymorphism Gene ID Skeletal muscle development related trait Reference

A17299834G IGF1R Eviscerated weight [30]

G729T IGFBP2 Breast muscle weight [31]

A663T IGFBP2 Breast muscle weight

G738A IGFBP2 Breast muscle weight and leg muscle weight

C/T SNP in intron 2 IGFBP2 Bodyweights [32]

g.570C>A IGF1 Breast muscle weight [33]

C51978309T IGF1 Transversal area of the leg and breast muscle fiber [34]

G6631778A GHR Bodyweights [35]

G+ 1705A GH Bodyweights [36]

MR2 PIT1 Bodyweight at 28 d, 42 d [37]

MR4 PIT1 Bodyweight at 84 d

MR5 PIT1 Bodyweight at 21 d, 28 d

g.3051C>T GHSR Final bodyweight [38]

c.739+ 726T>C (M2) GHSR Breast muscle weight and leg muscle weight [39]

G1215A GHRL Bodyweight [40]

8bp indel GHRL Bodyweight

C71T GHRL Bodyweight [41]

A241T MSTN Bodyweight at hatching [42]

c.234G>A MSTN Bodyweights [43]

G2283A MSTN Bodyweights [44]

T46023C MEF2A Leg muscle weight [45]

T89232G MEF2A Semi-eviscerated percentage

87T>C Myf5 Eviscerated weight [46]

154T>C MSTN Breast muscle weight

A446G MSTN Breast muscle percentage [47]

31-bp indel PAX7 Breast muscle fiber diameter, leg muscle fiber diameter, breast muscle fiber density [48]

Wen LUO et al. Genetic regulation of chicken skeletal muscle development 297



development are not consistent between breeds. Thus
GWAS cannot fully exploit all loci associated with muscle
development and a more comprehensive and deeper
analysis of these GWAS results is still needed.

3 Transcriptional level regulation of
chicken skeletal muscle development

3.1 Identification of candidate genes involved in chicken
skeletal muscle development by microarray and high-
throughput sequencing

Gene expression profiling chips and high-throughput
sequencing are effective methods for screening differen-
tially expressed genes between groups. By using skeletal
muscle from slow- and fast-growing chicken breeds as
experimental materials, or using skeletal muscle from
different developmental stages of chicken, researchers
have found many candidate genes related to skeletal
muscle development using microarray or high-throughput
sequencing experiments. By sequencing RNA to detect
gene expression difference between the skeletal muscle of
recessive white rock (WRR) and Xinghua (XH) chicken,
higher expression of FOXO3 was found to potentially
inhibit skeletal muscle development of XH chicken[58].
This could be because the mRNA level of FOXO3 is
expressed more highly in the skeletal muscle of XH than
that inWRR chickens, and reduced FOXO3 expression can
upregulate growth-related genes expression in DF-1
cells[58]. In addition to WRR and XH chickens, skeletal
muscle from sex-linked dwarf (SLD) chicken and normal
chicken have been used to discover genes or pathways
related to chicken muscle development[59,60]. The SLD
chicken has lower bodyweight and smaller muscle fibers
than those of normal chicken because of a recessive
mutation of the growth hormone receptor (GHR) gene. The
GHR mutation leads 55 genes and 173 genes to be
differentially expressed between the two chicken breeds in
embryonic day 14 (E14) and week 7 (W7), respectively,
and these genes are mainly related to the regulation of cell
division[59]. By comparing the differentially expressed
genes between E14 andW7 in SLD and normal chickens, it
was also found that many genes enriched in the MAPK,
PI3K-Akt, Wnt and insulin pathways were related to
chicken skeletal muscle development, and these genes can
interact with miRNAs to construct a miRNAs-mRNAs
regulatory network during skeletal muscle develop-
ment[59]. The above study was performed using microarray
experiments to investigate gene expression. Similarly,
microarrays were used to study Qingyuan partridge and
Cobb 500, representing slow- and fast-growing chicken
breeds, respectively[61]. In that study, many differentially-
expressed genes were also found, and it was argued that

energy metabolism-related genes might influence muscle
development, such as protein kinase AMP-activated non-
catalytic subunit gamma 1, protein kinase AMP-activated
non-catalytic subunit gamma 3 and protein kinase cAMP-
dependent type II regulatory subunit beta[61].
Broilers and layers are normally different chicken breeds

that differ enormously in their growth rates and body sizes.
By comparing gene expression in the skeletal muscle of
these two types of chicken, researchers have found that
many genes related to muscle fiber types, satellite cell
proliferation and differentiation are different in the two
kinds of chicken[62]. The dickkopf homolog 3 gene could
be a potential regulator of skeletal muscle development,
because the expression pattern of this gene was signifi-
cantly correlated with the natural increased rate of body
mass of chickens, and it had higher expression level in
broilers than in layers[62]. In general, although many
potential candidate genes were found to be involved in
chicken skeletal muscle development, large-scale analyses
are still required to validate their roles during skeletal
muscle development, to confirm that a candidate gene that
can directly affect chicken skeletal muscle development is
important for application in broiler breeding.

3.2 MiRNAs and long non-coding RNAs involved in
chicken skeletal muscle development

MiRNAs regulate target gene expression at the post-
transcription level. During skeletal muscle development,
many miRNAs have been found to have regulatory roles at
each step[3,22]. However, most of this research has been in
mammals, and the question whether these miRNAs can
regulate chicken skeletal muscle development still remains
to be elucidated. To investigate the functional miRNAs in
chicken skeletal muscle development, miRNAs and
mRNAs were sequenced from the skeletal muscle of
both broilers and layers[62]. A miRNA-target gene
interaction network related to skeletal muscle development
was constructed by using integrative miRNA target-
prediction and network analysis. In that network, many
genes related to muscle development were found to be
targeted by miRNAs, for example, gga-miR-1a can
directly inhibit activin A receptor type 2B expression,
and reversion inducing cysteine rich protein with kazal
motifs is a putative target of gga-miR-200b[62]. A similar
research strategy has been used in the study of miRNA
deep sequencing in the skeletal muscle of WRR and XH
chickens, and to construct a miRNAs-mRNAs interaction
network for chicken muscle development[63]. However, the
detailed functional validation of the genes or miRNAs
related to muscle development is still lacking in both of
these two studies.
In other work, expression of miRNAs and mRNAs was

detected in the skeletal muscle of dwarf and normal
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chickens, and it was found that let-7b can regulate skeletal
muscle development by directly inhibiting the GHR
gene[60]. Even though detailed functional verification of
let-7b was not performed, many other candidate miRNAs
were found from the microarray results, such as miR-203,
miR-20a-5p and miR-20b-5p. By using in vivo detection
and in vitro experiments, miR-203 was confirmed to inhibit
chicken myoblast proliferation and differentiation by
repressing Jun proto-oncogene (c-JUN) and MEF2C,
respectively[64]. Similarly, both miR-20a-5p and miR-
20b-5p have been comprehensively validated as regulating
chicken myoblast proliferation and differentiation through
specifically interacting with E2F transcription factor 1
(E2F1)[65]. This work has revealed the regulatory mechan-
isms of candidate miRNAs during muscle development
and also furthered understanding of the regulatory net-
works of chicken skeletal muscle development.
The candidate gene validation approach is a useful

strategy to find a functional miRNA acting during chicken
skeletal muscle development. As a well-known myogenic
miRNA in mammals, miR-206 has important roles during
muscle development. However, its function in chicken still
remains unknown. Aiming to investigate miR-206 roles in
chicken, miR-206 was overexpressed in chicken myoblasts
and found to significantly increase myogenin and muscle
creatine kinase expression, which are important genes for
muscle differentiation[66]. Additionally, eight variants have
been identified in the promoter region ofmiR-206 gene that
exhibit significant effects on chicken birthweight, indicat-
ing an important role of miR-206 in chicken development.
Myomaker is a new gene that was found to be involved in
muscle development[67]. To find out which miRNA can
directly bind to Myomaker 3′UTR and regulate its
expression, RNAhybrid software and dual-luciferase
reporter assay were used. It was found that miR-140-3p
directly inhibited Myomaker expression and by targeting
the Myomaker gene inhibits chicken myoblast fusion.
In addition to miRNAs, long non-coding RNAs

(lncRNAs) have attracted increasing attention in the
study of skeletal muscle development. The first chicken
lncRNA catalog in skeletal muscle has been con-
structed[68]. However, although novel lncRNAs in chicken
were identified, no single lncRNA has been validated to
function during chicken skeletal muscle development.
Recently, differences in lncRNAs expression were detected
in the skeletal muscle between slow- and fast-growing
chicken breeds, and it was found some lncRNAs can
regulate myoblast proliferation and differentiation by
interacting with miRNAs and mRNAs[69]. Additionally,
some lncRNAs have also been found to regulate gene
expression by cis-regulation (unpublished data). Besides
lncRNA, the functions of some circular RNAs during
chicken skeletal muscle development have been investi-
gated using circle-RNA sequencing. This research has
provided further understanding of the regulation of chicken
skeletal muscle development.

4 Epigenetic modification regulates
chicken skeletal muscle growth

Epigenetics is the study of stably heritable traits or gene
expression caused by mechanisms other than underlying
DNA sequence changes[70]. During skeletal muscle
development, epigenetic regulators are able to promote
the transcription of a selective group of gene and drive
myogenesis[5]. Gene expression during myogenesis can
also be regulated by epigenetic modification, such as DNA
methylation. To identify candidate genes and genomic
methylated regions for chicken skeletal muscle develop-
ment, the genome-wide DNA methylation pattern of
skeletal muscle was investigated using methylated DNA
immunoprecipitation-sequencing in high and low body-
weights of 7-week-old WRR and XH chickens[71]. Many
well-known growth-related genes, such as insulin like
growth factor 1 receptor (IGF1R), fibroblast growth factor
12 (FGF12), FGF14 and fibroblast growth factor receptor
2, were found to exhibit altered DNA methylation in all
comparisons, indicating that DNA methylation in several
growth-related genes may affect chicken skeletal muscle
development.
Another study investigating DNA methylation status in

chicken skeletal muscle was conducted in a three-yellow
chicken population[72]. By using fluorescence-labeled
methylation-sensitive amplified polymorphism analysis,
it was found that the differences in DNA methylation
levels are significantly associated with muscle fiber density
and muscle drip loss[72]. The level of DNA methylation in
the majority of the genome changes dramatically during
early development[73]. Using broilers as experimental
animals, the genomic DNA methylation status was
examined during chicken embryogenesis. An increasing
genomic DNA methylation level was found in muscle,
while the methylation level of the IGF2 promoter gradually
decreased[74]. As IGF2 is a positive regulator of skeletal
muscle development, and DNA methylation in gene
promoters can inhibit gene transcription and expres-
sion[75], the decreased promoter methylation levels of
IGF2 could release the expression of IGF2, and therefore
promote skeletal muscle development.

5 Transcription factor regulates chicken
skeletal muscle development through inter-
action with miRNAs

The critical roles of the three transcription factor families
during skeletal muscle development have been introduced
above. Undoubtedly these transcription factors also have
roles in chickens, and the polymorphisms in these factors
are associated with chicken muscle growth traits (Table 1).
In chicken myoblasts, it was found that MyoD and
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myogenin can promote the transcription of muscle-specific
genes, such as Myomaker, by directly binding to the E-box
region located in the gene promoter[76]. In addition to
regulating the transcription of their downstream genes,
these transcription factors can also interact with miRNAs
and then influence chicken muscle development. Recently,
a miRNA that exhibits gradually upregulated expression
during chicken myoblast differentiation was found to be
regulated by MyoD because of the binding of MyoD to the
promoter of the miRNA gene (unpublished data). The
MyoD promotes the expression of this miRNA and
facilities myoblast differentiation. In other work, it was
found that a small RNA called miR-203 can inhibit the
expression of MEF2C, a member of the three transcription
factors families, by directly binding to its 3′UTR[64]. The
inhibition of MEF2C by miR-203 repressed chicken
myoblast differentiation, and reduced the formation of
myotubes[64].
In addition to the members of these three transcription

factor families, many other transcription factors also have
important roles in the regulation of chicken skeletal muscle
development (Fig. 1). As important regulators of cell
proliferation, c-JUN and E2F1 promote chicken myoblast
proliferation by the regulation of their downstream target
genes[64,65]. Similarly, both can be regulated by miRNA.
MiR-203 and miR-20a-5p/20b-5p directly inhibit c-JUN
and E2F1 expression, respectively, and therefore repress

chicken myoblast proliferation[64,65]. However, E2F1 can
in turn directly regulate the transcription of miR-20a-5p/
20b-5p and thus form an E2F1-miR-20a-5p/20b-5p auto-
regulatory feedback loop[65]. In addition to c-JUN and
MEF2C, miR-203 can also bind to the 3′UTR of tumor
protein p63 (p63), which is able to promote muscle cell
proliferation and differentiation[77,78]. The binding of miR-
203 to the p63 3′UTR inhibits its mRNA expression and
functions[64]. Recently, it was observed that v-myc avian
myelocytomatosis viral oncogene homolog (c-Myc) tran-
scription factor can bind to the promoters of a large number
of genes, miRNAs and lincRNAs in chicken muscle cells
(unpublished data). In vitro experiments showed that c-
Myc regulates muscle cell proliferation and differentiation
by controlling the transcription of these downstream genes,
miRNAs and long intergenic non-coding RNAs (lincR-
NAs). Notably, some of c-Myc target miRNAs can in turn
bind to the 3′UTR of c-Myc mRNA and inhibit c-Myc
expression. Therefore, the interaction of c-Myc and its
downstream miRNAs provide a potentially important
feedback loop during chicken skeletal muscle develop-
ment.

6 Conclusions and future perspectives

Chicken embryos are a perfect model system for research

Fig. 1 The network of transcription factors and miRNAs interacting during chicken myoblasts differentiation to myotubes. Light blue
represents transcription factors; red represents miRNAs; yellow represents lincRNAs; white represents genes.

300 Front. Agr. Sci. Eng. 2017, 4(3): 295–304



on skeletal muscle development. Studies on the regulation
of chicken skeletal muscle development not only provide
further understanding of the process of muscle fiber
formation, but also allow the identification of potential
candidate genes and molecular markers that could improve
chicken muscle mass. In recent years, many genes, SNPs,
DNAmethylation regions and noncoding RNAs have been
found to be involved in chicken skeletal muscle develop-
ment, especially during the processes of myoblast
proliferation and differentiation. These two processes are
important for the formation of muscle fiber and determina-
tion of muscle fiber number. However, only a few genetic
regulators involved in the control of these two processes
were found in chicken, including some miRNAs and
transcription factors. Dozens of genes, ncRNAs and
epigenetic modification involved in the regulation of
chicken skeletal muscle development still need to be
validated.
The regulatory function of DNA methylation of gene

promoters, lncRNAs and circRNAs should be the next area
of research focus for chicken muscle development. Also,
the interaction between transcription factors and noncod-
ing RNAs should be a priority for further study.
Additionally, the reduced costs of sequencing and micro-
array have enabled the wider use of GWAS for identifying
complex trait-related gene loci and genomic regions.
Unlike humans and mice, the functions of most of the
candidate genes or loci identified by GWAS in chickens are
still to be validated empirically. Therefore, experimental
validation of function of the candidate genes and loci
involved in chicken skeletal muscle development should
also be a priority. In addition, gene imprinting, histone
acetylation, protein modification and protein structural
polymorphism have gradually been attracting more atten-
tion in cell development research[79]. The way in which
these genetic factors regulate skeletal muscle development
should also receive more attention. Finally, the rate of
skeletal muscle development is usually associated with
meat quality in the production of livestock and poultry.
However, the challenge is to improve the growth rate of
skeletal muscle while in parallel ensuring the meat quality.
To achieve this the characteristics of skeletal muscle during
the process of development that affect meat quality must be
understood. All of these issues deserve further study.
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