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Abstract Knowledge of the spatial distribution of soil
textural properties is important for determining soil
moisture storage and soil hydraulic transport properties.
Capturing field heterogeneity without exhaustive sampling
and costly sample analysis is difficult. Our objective was to
employ electromagnetic induction (EMI) mapping in low
apparent electrical conductivity (EC,) soils at varying soil
water contents to capture time invariant properties such as
soil texture. Georeferenced EC, measurements were taken
using a ground conductivity meter on six different days
where volumetric water content (6,) varied from 0.11 to
0.23. The 50 m x 50 m field included a subsurface gravelly
patch in an otherwise homogeneous silt-loam alluvial soil.
Ordinary block kriging predicted EC, at unsampled areas
to produce I-m resolution maps. Temporal stability
analysis was used to divide the field into three distinct
EC, regions. Subsequent ground-truthing confirmed the
lowest conductivity region correlated with coarse textured
soil parent materials associated with a former high-energy
alluvial depositional area. Combining maps using temporal
stability analysis gives the clearest image of the textural
difference. These maps could be informative for modeling,
experimental design, sensor placement and targeted zone
management strategies in soil science, ecology, hydrology,
and agricultural applications.

Keywords soil electrical conductivity, soil texture map-
ping, temporal stability analysis

1 Introduction

Quantitative determination of the spatial properties of soils
at the field scale remains a research challenge. The
development of precision agriculture with the targeted
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application of fertilizer or irrigation could be further
enhanced with improved, quantitative, soil textural data at
the field scale. Geophysical methods are gaining more
acceptance as a way of obtaining spatially distributed data
that can be correlated with soil properties[']. Although
techniques such as ground-penetrating radar (GPR) and
electromagnetic induction (EMI) are available to generate
valuable spatial information, determining efficient ways to
extract useful information remains a challenge!”"). Map-
ping protocols and calibration procedures have been
developed for soil salinity surveys, which remains an
active area of research*. However, in non-saline agricul-
tural soils we are often interested in the spatial delineation
of soils with different characteristics, usually textural
differences, with the minimum amount of soil sampling
and laboratory calibration, which adds expense to
surveying.

Identifying time-invariant static properties such as
texture is important as they have a direct influence on the
quantity and distribution of dynamic soil properties such as
soil water content. Soil water status is critical to plant
growth, crop quality, chemical fate and transport, and
microbial processes!™. Soil structure and texture are
important properties controlling the hydraulic conductivity
and infiltration capacity of a soil system!®\. These two
properties in turn determine how much water is stored in a
soil system as well as how much water is diverted from the
system due to runoff. Soil water content is an important
factor for many agricultural practices such as the timing of
tillage or fertilizer application and recent research effort
has focused on thist”*!. More importantly in dry climates,
knowledge of the soil water content can reduce water waste
and increase efficient use of this precious resource by
targeting irrigation more effectively’™). Thus, knowledge of
soil textural properties in space can help to infer soil
hydrological behavior.

Traditional soil mapping strategies tend to be subjective
and rely on the expertise of the soil surveyor'”. Discrete
point locations in the form of a pedon are chosen to sample
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soil physical and chemical properties in order to determine
soil properties for a given soil mapping unit. Thus, soil
regions are dependent on the original scheme of sampling
which in turn is dependent on vegetation coverage,
topography, and geological features. While this might be
sufficient to classify large areas, it is biased toward
grouping and overlooks small scale soil variability, which
is important for management and understanding hydro-
logical and ecological patterns. Our understanding of the
distribution of subsurface physical properties is also
limited by the sparse sampling plan and consequent
interpolation method. Thus defining subsurface physical
property boundaries remains largely subjective using
traditional sampling and survey methods.

Geophysical methods are frequently used in characte-
rizing the subsurface by measuring a surrogate property
that is related to underlying physical properties. Some
popular geophysical methods used for characterizing the
subsurface are: GPR, electrical resistivity tomography/
imaging (ERT/I) and EMI''*"2]. A GPR system transmits
high frequency (MHz—GHz) electromagnetic radiation into
the subsurface and receives a reflected signal that has been
transformed by the electrical properties of the subsurface
material. The reflected wave is dependent upon the
dielectric permittivity of various subsurface layers. The
application of GPR for spatial soil mapping is restricted by
the attenuation of the transmission signal in clayey and
highly conductive soilst'*]. An ERT/I system measures the
distribution of electrical resistivity in the subsurface by
sending a direct current signal into the ground through one
set of electrodes and measuring the induced voltage
through another set of electrodes. While the ERT/I
technique is a powerful technique for investigating
different depths of a transect, it tends to be time consuming
and most suited to static deployment. An EMI system
transmits a low frequency signal (kHz) into the subsurface
without the need to establish contact with the ground. The
alternating current produces a magnetic field in the
subsurface, which in turn induces secondary current
loops related to the subsurface electrical conductivity.
These create secondary magnetic field loops and the
instrument measures the superposition of the combined
primary and secondary fields!'*'*]. This noninvasive
technique is appropriate for field-scale measurement due
to its rapid response, ease of integration into mobile
vehicular measuring platforms and nondestructive/non-
contact requirements.

Apparent electrical conductivity (EC,) is a proxy for
subsurface physical properties and provides a measure of
charge mobility due to an application of an electric field,
and is defined as the ratio between current density
(J, A-m™) and electrical field (E, V-m™') according to
Ohm’s law. Several physical and chemical soil properties
influence field-scale EC, measurements. Friedman''®
conveniently partitions the major factors into three

categories: bulk soil, solid particle and soil solution. The
bulk soil category comprises the factors that are defined by
the organization of a three phase soil system such as
porosity (n) and water content (6). Factors in the solid
particle category include particle shape and orientation,
particle-size distribution, cation exchange capacity (CEC),
and wettability. lonic strength (o), cation composition and
temperature are factors that are classified under the soil
solution category.

EMI-based EC, measurements have been used by
researchers attempting to infer different properties and
characterize a wide range of processes at the field scale for
a host of different applications!'”). Some of the applica-
tions include: estimating claypan depth!'™); predicting
herbicide application leaching potentials in specific
areast'”; petrocalcic horizon deptht?” inferring topsoil
depth in claypan soils”®'); and identifying the locations and
depths of septic-system failure**). Corwin and Lesch****!
outline standard operating procedure for EC, surveys
applied to precision agriculture; specifically surveys which
calibrate EC, to the electrical conductivity of saturation
extract samples (EC.) for use in salinity studies, and
discuss several different applications of field-scale EC,
maps.

There are some studies that have used EMI mapping
techniques coupled with soil sampling to delineate
subsurface properties. Greve and Grevel>! have applied
EMI mapping to better define soil map unit delineation
widths. In classical soil mapping, map unit transition zones
are represented by lines since it is time consuming and
labor intensive to exactly quantify the width of the
transition zone!””!. Their study used auger sampling and
applied a spatial rate of change calculation on a kriged EMI
map to better define the transition zones of the map units.
EMI mapping was used to infer the subsurface morphology
of an agricultural field to identify areas with off-site
agrochemical migration®®. The authors mapped the field
for two consecutive days to see the effect of moisture
change on EC,. They were able to infer that the EC, pattern
similarity observed at two different water contents near
field capacity was due to soil morphology. Areas with a
faster change in conductivity as the field dried were
associated with high unsaturated hydraulic conductivity
and as prime candidates for chemical migration. Kitchen
et al.®’’ investigated the effectiveness of using EMI
mapping for delineating productivity zones for agricultural
management in claypan soils of Missouri. The study
showed that the productivity zones delineated using EC,
and elevation data agreed up to 70% with those delineated
from 10 years of combine monitored yield maps. Farahani
and Buchleiter”® conducted multi-year EC, surveys to
classify sandy and non-saline fields into low, medium and
high EC, zones. They measured the temporal variability of
one mapping event from another by investigating how the
measurements deviated from the 1:1 line.
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Different field experiments have shown that the major
properties that contribute to the apparent electrical
conductivity of a soil include the electrical conductivity
of the soil solution (EC,), water content and texture. Our
experiment was designed to test EMI performance at the
low end of EC, measurements. Differences in EC, between
sand and 2:1 clay mineral soils often can range as much as
60 to 100 mS-m'. However, in many agricultural soils,
textural differences may be more subtle, but still of
hydrological or economic importance. We chose a 50 m x
50 m field site with a relatively uniform silt-loam soil, but
on an alluvial fan with relict, subsurface gravel channels
that cannot be readily observed from the surface; our
objective was to determine if the EMI was sensitive
enough to identify the location of these channels. Changes
in soil water content could potentially mask differences in
soil texture and complicate the interpretation of and
electrical mapping of the subsurface in terms of defining
boundaries. Our strategy was to map the field using EMI at
a range of soil water contents to try and identify locations
with consistently higher or lower EC, than the global
mean. In addition, analysis was conducted to determine the
optimal water content for identifying textural differences.
Therefore, the objective of this study was to use repeated
EMI mapping and temporal stability analysis at different
soil water contents to delineate soil textural patterns in a
low EC, agricultural field.

2 Theoretical background
2.1 Temporal stability analysis

Vachaud et al.**) characterize the time-invariant associa-
tion between spatial location and classical statistical
parametric values as the concept of temporal or rank
stability. The method depends on a spatial location keeping
its rank in the cumulative probability function for different
sampling times). In the case of soil water content this has
been shown to work relatively well for level ground, but
less so for sloping ground**~*"!. Since our study area was
nearly level and the main assumption was that EMI
mapping can capture a time-invariant subsurface physical
property through repeated mapping, a temporal stability
analysis technique was a good way of quantifying and
analyzing the data. We have modified Vachaud et al.’s™*"]
equations as used for moisture storage to apparent
electrical conductivity (EC,).

For each support block (i) in the field on a mapping
event (j), the apparent electrical conductivity was defined
as ECa;. The difference Ay, (Eq. (1)), was evaluated by
subtracting the average EC, for all n locations at mapping
event, j, Taj, (Eq. (2)), from ECa;;.

where

I
ECa; =—Y ' ECa; 2)

o
The array A; was normalized by dividing it by ECa; to
produce a new variable, the relative difference (d;).

5y = (3)
v ECa;

For each mapping event, Eq. (3) was then used to
evaluate a column of relative differences for all locations.

Once the relative differences were determined, we then
calculated the average relative difference (;) for each
location across m mapping events, given by:

1 m
Iy @

The standard deviation of the relative differences of a
location can also be evaluated similarly. A quantitative
measure for testing the time stability between two mapping
days is the Spearman’s rank correlation coefficient (r,)1*%,

given by:

5_[:

A 627:1 (Ri/_Rij')2
rs(]’] )_17 n(n2_1> (5)

The test, specified in Eq. (5), is evaluated by comparing
the rank of a support block, i, on a specific mapping event j
(R;) to its rank on another mapping event j'(R;7). A rank
correlation matrix can be constructed for all the mapping
days by evaluating Eq. (5) for j,j" = 1 to m, where j # j'.
The matrix, r,(/,j") is an upper triangular matrix with values
of one in the diagonal. The closer the values of 7,(j, ;') are
to 1, the stronger the temporal stability of all the locations
in the field.

2.2 Data transformation using the normal score procedure

The underlying assumption of kriging is that the data are
normally distributed””). The normal score transform is
useful in normalizing many environmental variables that
have large outlying values (positively skewed) to provide a
normal distribution. The normal score transform function
is derived by matching the original skewed cumulative
distribution function (cdf) to a standard normal cdf (e.g.,
Fig. 1).

Functions F(z) and G(y) are cdfs of the original random
function (RF) Z(x) and the standard normal RF Y(x)
respectivelyl®*):

F(z) = Prob{Z(x)<z},G(y) = Prob{Y (x)<y} (6)

The transform, ¢(.), that takes any cdf F(z) to a standard
Gaussian cdf G(») is given as:

Y(x) = p(Z(x)) = G '[F(Z(x))] ™
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Fig. 1 Normal score transformation (¢) of the skewed cumulative distribution function (CDF), F(z), from EC, mapping event of July 9,

2006 (a) into a normal CDF G(y) (b).

where G!(.) is the inverse Gaussian cdf or quantile
function of the RF Y(x).

In algorithm form, the normal score transform procedure
can be reduced to the following three steps®>!:

(1) The n original data values, z(x), are first ranked in
ascending order and tied z values are separated according
to the local averages of the data surrounding each tied
value.

(2) The sample cumulative frequency of the datum z(x)
with rank k is then computed as:

pZ:k/nfO.S/n ®)

where all data receive the same weight 1/n
(3) The normal score transform of the z datum with rank
k is matched to the py, -quantile of the standard normal cdf:

(Z(x))] =G (p) ©)

*

yx)=G'[F

2.3 Spatial prediction

Kriging relies on an underlying spatial structure of a
measured variable in order to predict its value at
unsampled locations!***®). Most prediction methods,
including kriging, average the weighted values of the
adjacent sampled values (z(x;)) in order to predict the
variable at the unsampled point z*(xo).

2 (x0) = ) 0 Aez(x) (10)

The kriging problem simplifies to solving for a vector of
weights, 4, that will minimize a generalized least squares
(GLS) equation. The spatial dependence of the process,
represented in the residuals of the GLS regression
equation, is solved when:

c(x)

A=—+
C

where C is the matrix of covariances, C(x;,x;), between all

(11)

possible pairs of the n sample sites and c(x) is a column
vector of covariances between the prediction point and
each of the n sample sites.

To solve for A, we needed to evaluate the matrix of
covariances C, which was done using a semivariogram
function, written:

1) = =3V () 2, + )P

N (12)

where the function computes the average squared
differences of the values of the random variable z (.) at a
vector of data pairs x and x + 4, where N(#) is a number of
data pairs within a given class of distance. A parametric
model was used to describe the experimental semivario-
gram to provide a continuous, positive and smooth
description of the covariance matrix, C.

Block kriging extends the above method from a point
estimation of a spatially continuous variable to the average
value over a small area or block!**!. This is useful when the
support block of a physical measurement is beyond a point
as in EMI measurements.

3 Materials and methods

3.1 Study site
The field study was conducted in the summer and autumn
of 2006 and 2007 at Greenville Farm, Utah Agricultural
Experiment Station, North Logan, Utah (41°46'1" N,
111°48'40"” W). Mean annual precipitation is 422 mm and
the mean annual temperature is 8.6°C, providing the site
with a xeric soil moisture regime and a mesic soil
temperature regime. The area of study was a 50 m Xx
50 m square area with smooth, nearly level topography
located on the eastern end of a larger field. The field had
been fallow for 2 years at the time of study.

The soil at the Greenville Farm is of the Millville Series.
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The soil parent material is medium-textured alluvium (silts
and very fine sand) deposited as distal fan and overbank
flood deposits on the Green Canyon alluvial fan (Fig. 2a).
The soil pH was 8.2 due to the high concentration of
primary CaCOs;. The soil is classified in the family of
coarse-silty, carbonatic, mesic Typic Haploxerolls. The
typical pedon that represents the soil in most of the study
area contains < 1% rock fragments and the texture (silt
loam) is uniform with depth. However, gravel lenses exist
in these fields and become most apparent during soil
ripping (J. Slade, personal communication, 2006). Discus-
sion with the farm manager and our visual observations
were used to identify the general location of the gravel lens
(Fig. 2b) in what is otherwise a relatively homogeneous
soil in the study field. Representative pedons of the gravel-
free soil and the soil with the gravel lens were described in
backhoe-excavated pits using standard methods.

3.2 Instruments

A set of 11 0.15-m TDR probes with thermocouples were
set up in a plot near the mapping location in soil
representing the gravel-free Millville series in order to
measure water content and temperature. The sensors were
buried at depths of 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7,
1.0, 1.5 and 2.0 m below the surface. Volumetric water
content, bulk electrical conductivity, and temperature data
were collected every 30 min. The volumetric water content
(6,) at 0.5 m was taken to be the water content of the
control plot, corresponding to the depth of maximum
weighting for the EMI measurement. Hourly rainfall and
evapotranspiration data were also collected from a weather
station located on an adjacent grass field.

Georeferenced EC, measurements were taken noninva-
sively using the DUALEM-1S ground conductivity
instrument (Dualem, Milton, ON, Canada) along with a
Trimble ProXT GPS unit (Sunnyvale, CA, USA). The
DUALEM-1S (DUAL-geometry electromagnetic) is a

geo-conductivity sensor with a transmitter operating at
the frequency of 9 kHz and two receivers with different
orientations. We used the horizontal coplanar geometry or
V-Vprm mode where both the transmitter and the receiver,
with a 1-m separation, use vertical dipoles. The depth of
exploration for the V-V 1 setup is about 1.5 m!"! with
the depth of maximum weighting at about 0.5 m. Data
from the EMI instrument was transmitted serially through a
9-socket DB-9 connector and was acquired simultaneously
with the GPS data using a hand-held geographic informa-
tion system (HGIS, StarPal Inc., Fort Collins, CO, USA)
program inside an Allegro CX hand-held field computer
(Juniper Systems, Logan, UT, USA). In a previous study
we tried using a Geonics EM-38, but the required
calibration procedure to null out the magnetic suscept-
ibility circuit resulted in inconsistent readings at low EC,
values (<20 mS-m™). The DUALEM-1S only measures
EC, and comes with factory set calibration, resulting in
stable, consistent readings in low EC, soils.

3.3 Mapping

The EMI instrument was turned on for 30 min before
mapping, which was usually carried out early in the
morning or in the evening, to avoid temperature drift
effects on the instrument!'”). The EMI instrument was held
at about 10 cm above ground while traversing the field by
walking in rows spaced 3 m apart (Fig. 2b). The EMI
mapping process required about 45 min with EC, data
being collected every second. The field was mapped a total
of 30 times in summer/autumn 2006 and 2007.

Maps were selected from six different days to cover a
range of field moisture regimes as recorded in the control
plot. The volumetric water content (6,) ranged from a low
of 0.11 (September 21, 2007) to a high of 0.23 (October 7,
2006). Intermediate water-content mapping days had the
following 6,: 0.13 (October 15, 2007); 0.16 (July 9, 2006);
0.18 (September 28, 2006); and 0.20 (September 26,

Fig. 2 (a) Hillshade image showing the location of the study area (white box) on the distal portion of the alluvial fan (outlined with
dotted line) deposited by streams draining Green Canyon (white line); (b) the 50 m x 50 m field showing the EMI survey route (dotted
line), the general location of the gravel lens (crosshatch), and locations of the two soils (pits 1 and 2) described (white boxes).



140 Front. Agr. Sci. Eng. 2017, 4(2): 135-145

2006).

To reduce the effect of diurnal temperature fluctuations,
the EC, data for each day were corrected to a standard
temperature of 25°C. The temperature corrected EC, data
were then checked for continuity and anomalous values
using a time-series view of the data. Anomalous values can
be caused by buried metal fragments, wires, pipes and
similar objects. These were identified and removed from
the data set as a quality control measure.

3.4 Data analysis

We carried out exploratory data analysis to produce basic
statistics and histograms for each mapping event. The
quality controlled EC, data were normal score transformed
using S-GeMSP 7! to prepare the data for a kriging process.
The field geometry was then subdivided into 2500 blocks
of 1 m? area representing the support area of the EMI
instrument. The data was kriged using VESPERP®! and
then returned to S-GeMS to be back transformed.
Temporal stability analysis was then applied to the six
EC, maps. Since our support area is a 1m? block, each map
was divided into 2500 zones and the relative difference of
each zone was calculated for each mapping event. The
relative differences for each zone were then averaged

(@ (b)

0, 0.11 m*m? 0,
Ec,(avg): 7.60 mS-m ! Ec,(avg):
CV: 11.9% CV:

(d

0, 0.18 m*-m 3 0,
Ec,(avg): 11.4 mS:m ' Ec,(ave):
CV: 13.0% CV:

0.13 m*m 0.

0.20 m*m3 6, 023 m’m?
13.6 mS-m'! Ec,(avg): 14.7mS:m'"
12.5% CV: 10.9%

across the six mapping events (mean relative difference)
and ranked in ascending order.

4 Results

The six selected mapping days representing different
volumetric water contents were used to produce field-scale
EC, maps presented in Fig. 3. The maps show the EC, of
the field at varying water content with each color gradation
on the map representing a 12.5 percentile of the data range,
with the lightest color representing low EC, and the darkest
color representing high EC, values. The average EC, of the
field for each volumetric water content is shown in Fig. 3
and ranged from 7.60 mS-m™ at a 6, of 0.11 m*-m™ to
14.7 mS-m™ for the highest water content of 0.23 m*-m™.

Visual inspection of the figures shows the low EC, area
corresponding with the general location of the gravel lens
and a higher EC, region to the north. It is also noticeable
that the pattern around the low EC, area changes with
water content. The map in Fig. 3e shows the least
consistent pattern. The EC, was measured at the end of a
rainfall event and we interpret the pattern to indicate the
redistribution of water changing the soil EC, as the field
was mapped. This indicates that mapping should be

, 0.16 m*m
820 mS-m! Ec,(avg): 9.72 mS-m '
9.9% CV: 16.1%

Fig. 3 Block kriged EC, maps of the field at varying water content with each shade gradation representing 12.5 percentile of the overall
data, with the lightest color representing low EC, and the darkest color representing high EC, values. The general location of the gravel

area is inside the dashed line enclosure.
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avoided during or immediately following rainfall events
when rapid changes in EC, may occur with wetting.

Further analysis of the data was conducted using the
coefficient of variation (the ratio of the standard deviation
to the average EC, of the field). This tended to be lowest at
the low and high water contents (Fig. 3a, Fig. 3b, Fig. 3f)
and highest at the somewhat intermediate water contents
(Fig. 3c, Fig.3d, Fig. 3e). This perhaps indicates that the
greatest contrast for a single mapping occurs at an
intermediate water content, discussed later on.

Box plots are presented in Fig.4 and show the EC,
distribution for each mapping event as the volumetric
water content increased. A clear increase in the field
average EC, is observed as a function of water content.
The lowest interquartile range (IQR, Q3-Ql) of
1.23 mS-m ! was observed at the lowest 6, of 0.11 and the
highest IQR 0of2.75 mS-m™" was observed at the highest 6,
of 0.23. The standard deviation increased at a rate lower
than the rate of increase of the mean because the CV did
not increase with increasing average EC,, likely an
underlying reflection of the quadratic relationship between
EC, and soil water content.

Spearman’s rank correlation coefficient () was used to
get a quantitative measure of the time stability of spatial

18

EC,/(mS-m )

6

g

1 1
0.14 016 018 020 022
Volumetric water content/(m*-m )

0.10 0.12 0.24

Fig. 4 Box plots showing the EC, distribution of each mapping
event as a function of volumetric water content. The box plots give
the 25 (Q1), 50 (Q2, median) and 75 (Q3) percentile of the data in
the box as well as the 5 and 95 percentile of the data at the
whiskers. Minimum and maximum values are shown by dots.
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locations between different mapping days (Table 1). The
three wetter days of mapping (6, =0.18, 0.20 and 0.23) had
relatively high Spearman’s rank correlation coefficients.
The highest occurs between mapping events with 6, of
0.18 and 0.20 with r, = 0.92. The two driest days of
mapping (water contents of 0.11 and 0.13) have the second
highest 7, in Table 1 at 0.89. The wet and dry mapping days
that have the highest correlation coefficients are those
mapped a few days apart. The mapping events at water
contents just below field capacity (e.g., 6, =0.16 and 6, =
0.20) are the least correlated with the other mapping
events, indicating the strongest electrical contrast.

The relative differences for each zone were averaged
across the six mapping events (mean relative difference)
and ranked in ascending order to produce Fig. 5a. The
lowest ranked spatial location (zone) is 27% lower than the
averaged mean EC, of the six mapping events, while the
highest ranked zone is 18% higher. We interpreted the
inflection points as indicating transition zones between soil
units, representing boundary delineations to classify the
field into three regions (Fig. 5b). The regions were
classified using the following ranges of mean relative
difference percentages: Region 1 (lowest conductivity
area), —27% to —11%; Region 2, —11% to 5%; and Region
3 (highest conductivity area), 5% to 18%.

Ground-truthing was conducted to determine observable
differences in these regions. The two soils described
initially are consistent with Regions 1 and 3. Selected
morphological properties of the soils are illustrated in
Fig. 6. The Millville pedon (coarse-silty, carbonatic, mesic
Typic Haploxerolls) of the control plot (Fig. 6a) represents
a typical pedon of the gravel-free, silt-loam dominated
Millville series found in Region 3. The pedon with the
gravel lens (coarse-loamy, carbonatic, mesic Entic Hap-
loxerolls) typical of Region 1 (Fig. 6b) has a substantial
amount of gravel throughout the upper 65 cm, with a
gravel lens (80% gravel by volume) from 45 to 65 cm.

Core samples representative of the three zones were
taken in 30 cm increments. In Region 1, where we
expected the gravelly soil, the coring device was only able
to penetrate to a depth of about 40 cm until impeded by the
gravel, so only one core was sampled. In Region 2, the
coring device was able to penetrate deeper, going to depths
of between 70 and 85 cm, with the depth increasing with
distance from Region 1. Three cores were sampled in

Table 1 Spearman’s Rank Correlation coefficient between the six mapping events at varying volumetric water content, 6,

Volumetric water content 6,=0.11 6,=0.13 6,=0.16 6,=0.18 6,=0.20 6,=023
6,=0.11 1

6,=0.13 0.89 1

6,=0.16 0.79 0.57 1

6,=0.18 0.69 0.79 0.54 1

6,=0.20 0.54 0.68 0.43 0.92 1

0,=023 0.78 0.72 0.84 0.86 0.77 1
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Fig. 5 Temporal stability analysis. (a) The mean relative difference (%) of the spatial blocks ranked in ascending order; (b) a map of the
mean relative difference delineated into three regions according to the inflection points of the mean relative difference graph.
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Fig. 6 Selected morphological properties of soils described at the Millville control soil representative of Region 3 (a) and the soil with
gravelly horizons representative of Region 1 (b), pits 1 and 2 respectively on Fig. 2. Colors are for moist soil; gravel volume was estimated

visually in the field; and clay concentration was estimated by feel.

Region 2. In Region 3, five cores were taken to the extent
of the device (90 cm), indicating essentially no gravel in
this zone.

Each 30-cm core sample was homogenized and
analyzed for particle-size distribution using the hydrometer
method®”!. In addition to the clay percentage, the
percentage of fine particles (silt and clay) was determined
due to its importance in the water holding capacity of the

soil. Region 2 had an average clay percentage of 11.9%+
1.09%, whereas Region 3 had an average clay percentage
of 12.9%+1.82%. We did not find a statistically significant
difference between the average clay percentages of
Regions 2 and 3. However, the average fine particle
percentages in Regions 2 and 3 were 50.5%+44.39% and
54.6%44.09%, respectively. We were able to reject the
null hypothesis of equal means of fine particle percentage
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for both regions at the 5% significance level (P = 0.023)
using a two sample #-test. The test was repeated with the
nonparametric Wilcoxon rank sum test, and we were able
to ascertain at the 5% significance level (P = 0.036) that the
medians of fine particle percentage were different between
Regions 2 and 3.

We interpret Region 1 as the gravel lens, which tapers
off in Region 2, giving way to the homogeneous Millville
silt-loam in Region 3. Region 1 is consistent with a relict
high energy channel of the alluvial fan. As the energy of
the channel subsided, finer textured material was deposited
forming the present Millville Series soil. We can also see
from our textural delineation map (Fig. 5b) that the coarser
texture material also spread at the edge of the high energy
channel depositing a limited amount of gravel around the
surrounding area until tapering off. The spread of the
gravel was predisposed toward the south to Region 2,
where our depth of coring was limited and the fine particle
percentage is lower compared to Region 3. We conclude
that EMI imaging using repeated surveys at different water
contents can be a useful tool in identifying subsurface
morphological features such as gravel lenses.

5 Optimal water content for mapping
heterogeneity

Clearly, a multi-mapping strategy provides important
information for delineating soil textural boundaries with-
out the extra work required for physical calibration.
However, repeated mapping cannot always be achieved
and so a pertinent question to ask is, for soils with low
electrical contrasts, like non-saline soils, is there an
optimum water content for determining underlying spatial
patterns of soil texture. To attempt to answer this question,
we examined the histograms of the kriged maps (Fig. 7).
We focused on the driest mapping event (6, = 0.11),
wettest mapping event (6, = 0.23), and a mapping event in
between with a water content of 0.16 (medium). The
histogram for 8, = 0.16, shows three strong peaks, which
appear to collapse and merge at the high and low water
contents. This may indicate that the strongest contrast in
EC, occurs at water contents just below field capacity (6, ~
0.21).

If physically or economically limited to one mapping
event, the strongest texturally induced EC, differences in
the Millville soil were observed below field capacity. This
point (6, = 0.16) has the highest coefficient of variation,
16% (Fig.3), it is the least correlated with the other maps
(Table 1), and it exhibits a multimodal histogram with
distinct peaks (Fig. 7). Why does this occur? Theory and
research supports the idea that field variability in bulk EC
likely increases with the variability of water content*"’,
The greatest electrical contrast will occur when one
textural component is wetter and one drier. So when
sand and clay areas are subjected to gravitational drainage
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Fig. 7 Histograms of EC, at 6, = 0.11 (solid line); 6, = 0.23
(dashed line); and, 6, = 0.16 (dotted line) field water content
conditions

we expect the sand to drain while the clay will remain
wetter. This increases the electrical contrast between
textural areas, and appears to occur close to field capacity,
which is what we are exploiting to map the texture.
However, there is a further issue that arises, which is how
changes in the soil moisture due to drainage alter the
vertical electrical conductivity. When the nonlinear nature
of the spatial weighting function of the EM instrument
comes into play*'! and vertical heterogeneity in soil
texture and water content is added, it becomes harder to
predict how the spatial variability of the bulk EC will
respond to spatial and vertical variability in soil water
content. This raises the question as to what extent the high
variability in EC, at 8, == 0.16 is a result of the variability
in the textural component of the EC, or a result of the
interaction in horizontal and vertical variations in water
content and the spatial weighting function of the EM
instrument. Given that higher EC, tends to compress the
EM depth of exploration*'!] this perhaps adds to the
contrast. This paper does not address this intriguing
question which will set the limits on how well textural
contrasts can be imaged using the EMI approach,
especially using inversion. Combining techniques such
as EMI and gamma ray may well prove to be the best
approach!*?).

The repeated EMI mapping of low EC, soils at varying
water content reveals the textural patterns of the subsurface
as demonstrated by this study. The fact that the range of
EC, in this research was only about 12 mS-m™" makes the
adaptation of this methodology into areas with a larger EC,
range more informative. Thus repeated EMI mapping can
be useful in soil surveys intending to delineate areas with
heterogeneous soils as well as in better defining transition
zones between soil units. The methodology should be
considered a tremendous benefit in the arsenal of tools
used by the soil surveyor, especially for site-specific soil
maps. All geophysical techniques exploit contrasts in
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target properties and as such require careful interpretation.
The methodology could be useful in precision agriculture
in demarcating productivity and management zones for
improved utilization of resources and better yield without
the need for extensive calibration. The methodology could
also be used to improve sampling schemes, especially in
pristine environments, by providing an extra layer of
information on soil variability and determining locations
where maximum or minimum change occurs. This
information could be very helpful for the potential
placement of monitoring equipment, sensors and observa-
tion nodes for monitoring soil hydrological processes in
situ.

6 Conclusions

Spatial variability of soil properties presents difficulty for
capturing the heterogeneity without sampling exhaustively
and becoming overwhelmed with data analysis, and losing
site of the dominant processes. The development and
testing of a new procedure for mapping non-saline soils to
differentiate static soil characteristics from dynamic ones
was presented. We considered soil texture as a dominant
static property, whereas soil water content is a dynamic
property that changes rapidly over time. To separate these
properties, we developed a multi-mapping methodology
and analysis procedure. This allowed us to identify
locations exhibiting consistent behavior over a range of
soil water content. The procedure allowed us to noninva-
sively map field-scale soil textural patterns by separating
the EMI response due to water content variation from static
textural properties using temporal stability analysis. We
collected and presented six georeferenced EC, surveys at
volumetric water contents ranging from 0.11 to 0.23 in a
50 m x 50 m field containing silt loam soil. Block kriging
facilitated prediction of unsampled areas to produce EC,
maps at meter resolution. Temporal stability analysis was
then applied on the six EC, maps and the field was divided
into three regions. The lowest conductivity region was
found to be associated with a relict high energy channel
that deposited coarser materials (gravel) as the soil parent
material. This noninvasive mapping approach has the
potential to reveal the spatial distribution of time-invariant
subsurface properties using repeated EMI surveys, espe-
cially when taken over a range of field soil moisture levels.
Given the composite maps produced, decisions can be
made as to whether calibration is required, or if the
obtained information is sufficient for the purposes of
identifying management zones. These maps provide
valuable insights into soil textural properties to support
modeling and experimental design for a broad array of
disciplines.
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