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Abstract Severe resource shortage and waste of resource
in agricultural production make it necessary to assess
efficiency to increase productivity with high efficiency and
ensure sustainable agricultural development. This paper
adopted an input-oriented data envelopment analysis
(DEA) method with the assumption of variable returns to
scale to evaluate agricultural production efficiency of 100
major irrigation districts in Northwest China in 2010.
Major findings of this paper were as follows: firstly, the
average value of total technical efficiency, pure technical
efficiency and scale efficiency of those irrigation districts
in Northwest China were 0.770, 0.825 and 0.931,
respectively; secondly, 30% of irrigation districts were
technically efficient, while 42% and 32% of them showed
pure technical and scale efficiency respectively. Among
inefficient decision-making units, total technical efficiency
score varied from 0.313 to 0.966, showing significant
geographical differences, but geographical differences of
pure technical efficiency was more consistent with that of
total technical efficiency; thirdly, input redundancy was
evident. Inputs of agricultural population, irrigation area,
green water, blue water, consumption of fertilizer and
agricultural machinery could be reduced by 34.88%,
40.19%, 43.85%, 47.10%, 41.53% and 42.21% respec-
tively without reducing agricultural outputs. Furthermore,
irrigation area, green water and blue water had relatively
high slack movement though Northwest China which is
short of water resources. Based on these results, this paper
drew the following conclusions: First, there is huge
potential for Northwest China to improve its agricultural
production efficiency, and agro-technology not input scale
had greater influence on improvement. Second, farmers
needed proper guidance in order to reduce agricultural
inputs and it is time to centralize agricultural management
for overall agricultural inputs regulation and control.
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1 Introduction

With only 7% of global arable land and 6% of global water
resources to feed 22% of the global population, food
security has always been being a real challenge for
China[1,2]. Dating back to the 1990s, Brown questioned the
capacity of China to feed itself[3]; expressing the same
concern, the International Institute for Applied Systems
Analysis (IIASA) also voiced the question, ‘Can China
feed itself?’[4]. Nowadays, due to urban expansion[5],
climate change[6,7] and environmental pollution[8], increa-
singly resources are becoming unavailable for agricultural
production[9]. Yan et al. suggested that one percent urban
population rise will lead to nearly 0.5% agricultural water
use decrease[10]. Secondly, although food production
capacity has generally improved over the past few decades,
the growth rate in food demand out-weights that in food
supply[11]. It is claimed that the rate of food demand is 1.3
times higher than growth in supply. It is estimated that food
supply needs to increase by 30% by 2030 to meet the
demand from the growing population in China[12,13].
Therefore, agricultural production faces many pressures:
intrinsically finite natural resources[14], shrinking provi-
sion of natural resource[15] and increasing demand[16].
Under these circumstances, the question of how to

increase food production with current resources levels
becomes the key challenge to ensure food security[17,18].
Since food security is closely related to resource security, it
has been universally agreed among researchers that
resource productivity and efficiency should be improved
so as to guarantee food production[19,20], which means to
produce considerably more grain with unit input of
resource. In terms of agricultural production, land and
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water resource are the factors that can most directly
influence agricultural development[21,22]. Unsurprisingly,
land use efficiency[23,24], water productivity[25–27] and the
effect they have on grain yield[28] have been investigated
extensively.
However, water and land are not the only factors that

influence agricultural productivity[29]. In addition to these,
fertilizers, pesticides, agricultural technology and agro-
nomic management are increasingly important in raising
grain yield and facilitating the improvement of agricultural
productivity[30]. However, researchers claimed that over-
use of fertilizers and pesticides is much too common,
leading to serious environmental pollution and high risks
in food security[31]. Shen et al. reported that from 1980 to
2010, cereal grain yields only increased by 65% whereas
chemical fertilizer consumption increased by 512%[32].
Thus, environment and food quality have been threatened
because of overuse of fertilizers[8]. Le et al. argued that
eutrophication has been triggered by excessive and
unbalanced use of nutrient resources and soil erosion has
become increasingly serious because of overuse of
irrigation water[33]. There is no doubt that at present
growth of agricultural output is mainly driven by increased
inputs. However, it is obvious that input-driven agriculture
is inappropriate and unsustainable in the long-term.
Excessive inputs in agricultural production not only hold
back improvement of agricultural productivity but also
result in environmental pollution. Being aware of this
issue, researchers have begun to pay more attention to
improving total factor efficiency in agricultural production,
hoping to change the agricultural production model from
input-driven to precision agriculture, which means devel-
oping a model for agriculture with both high productivity
and high efficiency[32].
Methods and publications about agricultural efficiency

assessment can be divided into two categories: partial
measures of productivity and analysis of total factor
productivity. In the former, the efficiency of water[7,27,28],
land[34,35], fertilizer[36], machinery and labor[37] has been
studied. Although partial measure of productivity works
well in evaluating efficiency of a single factor, results can
be misleading for overall productivity[38]. In the latter,
stochastic productivity frontier (SPF) and data envelop-
ment analysis (DEA) are the most common methods used
to measure efficiency in agriculture. For example, Hu and
McAleer estimated Chinese agriculture production effi-
ciency with panel data from 1991 to 1997[39]. However, it
was realized that provincial level estimates were too
unreliable and did not adequately reflect geographical
heterogeneity. So researchers such as Chen et al. started to
analyze agricultural production efficiency and technology
gap in China based on county-level data[40] with the
method of meta-frontier. Recently, scientists have begun to
measure both spatial and temporal differences in agricul-
tural production efficiency in China. Li and Zhang
analyzed factors influencing agricultural productivity,

agricultural total factor productivity (TFP) growth and
the gap between regions with provincial data from 1985 to
2010[41]. Li et al. used DEA to measure agricultural
production efficiency in Hebei Province based on a survey
of 99 household farms in Hebei Province in 2010[42]. Liu
et al. measured agricultural efficiency in Hetao irrigation
district from 2000 to 2008 at county-level using the DEA
method[43].
In summary, assessment of agricultural productivity has

mainly focused on China as a whole or a single province,
but analysis of representative areas is still lacking. Kang
et al. reported that irrigated land produced 40% of the total
grain output with only 20% of total land acreage[13], which
showed the importance of irrigated districts in ensuring
China’s food security. Therefore, this study focused on
major irrigation districts of arid areas in Northwest China,
the most arid areas in China. Initially, we used the DEA
method to measure total technical efficiency, pure technical
efficiency and scale efficiency in every irrigation district.
Then we analyzed input redundancy of inefficient irriga-
tion districts, including radial movement and slack move-
ment. Our purpose was to address the following issues:
First, the significance of geographical differences of
agricultural production efficiency in the arid region.
Second, the potential opportunity for the reduction in
inputs. Our ultimate aim is to provide suggestions for
policy makers and farmers, and advice on agricultural
activities in this region so that agricultural production can
continue to be improved.

2 Materials and methods

2.1 Study area and data

The most arid areas of China are in Northwest from 31°33′
to 49°11′ N, 73°28′ to 119°54′ E, including Gansu,
Ningxia, Qinghai, Xinjiang, the Guanzhong Plain, Nor-
thern Shaanxi and the Inner Mongolian Plateau, and cover
a total area of 3.74 � 106 km2, accounting for 39% of the
country[44]. Also, the area is an important grain reservoir.
In 2010, it yielded about 10% of the national grain
production from 13% of the grain acreage using 10% of the
nation’s irrigation water.
However, usage of agriculture inputs in this region is

less efficient than the average level for China. For example,
water productivity in this area is less than 1 kg$m–3, which
is much lower than the national average of about
1.6 kg$m–3, indicating that there is considerable opportu-
nity to increase agricultural production efficiency in this
region. Furthermore, we believe that improvement in
agricultural production efficiency will benefit not only
agricultural production but also the ecological environment
in this region. In this paper, a hundred irrigation districts
were selected among all those arid areas. Their distribu-
tions in each area are shown in Fig. 1. The number of
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irrigation districts in Inner Mongolia, Gansu, Ningxia,
Qinghai, Shaanxi and Xinjiang was 6, 19, 2, 13, 11 and 49,
respectively.
Six input and two output factors were chosen from

available published data. The inputs used were agricultural
population (AP, 104 persons), irrigated area (IA, 103 hm2),
green water (GW, 108 m3), blue water, i.e., irrigation water,
(BW, 108 m3), chemical fertilizer (CF, t) and agricultural
machinery (AM, 104 kw). The outputs used were:
agricultural value (AV, 108 CNY) and grain output (GO,
104 t). AP, IA, BW, AV, GO were provided by China
Irrigation and Drainage Development Center. CF and AM
were taken from the Statistical Year Book 2011. GW was
calculated as effective precipitation multiplied by the
growing area. For each irrigation district, effective
precipitation was calculated with the formula recom-
mended by USDA soil conservation service (Eq. (1)).

Pe ¼
Pð4:17 – 0:02PÞ

4:17
P < 83

41:7þ 0:1P P³83

8
<

: (1)

where Pe and P are the 10-day effective precipitation and
precipitation, respectively, in mililiter. Table 1 lists the
statistical characteristic of inputs and outputs.

2.2 Technical efficiency assessment

Production departments always want to produce as many
outputs as possible with given inputs or reduce inputs
under current outputs level. When actual inputs are beyond
minimum inputs or actual outputs do not equal “target”

outputs, a firm will be affirmed as technically inefficient.
Corresponding to the above two measures, technical
efficiency assessment can be input-oriented or output-
oriented. When it is input-oriented, technical efficiency can
be measured as the ratio of the minimum inputs with actual
inputs under current level of outputs. When it is output-
oriented, technical efficiency can be measured as the ratio
of actual outputs with “target” outputs without increasing
inputs.
When there is only a single input x and single output y,

as shown in Fig. 2, the curve OF′ is the production frontier,
which reflects the relationship between inputs and outputs.
Firms B and C locate at the production frontier. They
reflect the current technological level of firms B and C and
represent the maximum output under current inputs. These
firms are technically efficient. In contrast, firm A is off the
production frontier. Without increasing any input, its
output could be increased to B. Thus we know firm A is
technically inefficient. Based on the aforementioned
definition, with input-oriented perspective, for firm A, its
technical efficiency equals CC′/AC′; with output-oriented
perspective, its technical efficiency equals AA′/BA′.
Besides lack of advanced technology, due to scale

inefficiency, firms may also not be at the optimal
production scale, which leads to relatively low total
technical efficiency (TTE). There are three kinds of
production scales: Increase Return to Scale (IRS),
Decrease Return to Scale (DRS) and Constant Return to
Scale (CRS). When firms operate at IRS, it means that
when inputs increase by k times, outputs would increase by
more than k times. Then firms can enlarge their production

Fig. 1 Provisional distribution of irrigation districts in Northwest Arid Areas in China
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scale to improve scale efficiency (SE), thus improving
TTE; when firms locate at DRS, it means that when inputs
increase by k times, outputs would increase by less than k
times. Then firms should shrink their production scale to
improve SE, thus improving TTE; when firms locate at
CRS, it means that when inputs increase by k times,
outputs would also increase by k times. Then firms can just
remain at the current production scale. If k is larger than 1,
the equations can be expressed as Eq. (2).

f ðkxÞ < kf ðxÞ () IRS

f ðkxÞ > kf ðxÞ ()DRS

f ðkxÞ ¼ kf ðxÞ ()CRS

(2)

2.3 Input-oriented DEA models

DEA is very widely used in technical efficiency assess-
ment. It is a non-parameter method, using linear program-
ming to construct a piece-wise frontier that envelops
observations of all firms, that is, all decision making units
(DMUs)[41,45,46], then calculating technical efficiency of
every DMU according to the frontier. As mentioned in 2.2,
efficiency assessment could be input-oriented or output-
oriented. Given that it is difficult for farmers to control
outputs in contrast, they can easily control the amount and
combination of inputs. Therefore, this paper adopted input-
oriented DEA method to measure technical efficiency of

100 major irrigation districts in Northwest China. As
mentioned in 2.2, production scale of a firm can be at IRS,
DRS or CRS. However, without scale efficiency assess-
ment, it is difficult to figure out which scale status a firm is
locating at. For DEA method, at first it assumes that all
firms are at the optimal production scale, which means they
are at CRS. With CRS DEA method, total technical
efficiency (TTE) can be measured. Obviously, CRS DEA
method could not tell whether it is technology or
production scale that has negative influence on TTE.
Then VRS DEA method was introduced, which takes
production scale variability into account. With VRS DEA
method, pure technical efficiency (PTE) could be mea-
sured. Only when a firm is really scale efficient, TTE
equals to PTE. Otherwise, TTE< PTE, and scale effi-
ciency (SE) equals to TTE/PTE. This paper wants to know
exactly what the factor is, technology or production scale,
that leads to relative low total technical efficiency of
irrigation districts in Northwest China. Therefore, the
paper used both CRS DEA and VRS DEA methods to
assess technical efficiency. The linear programming
equations and computer software used to solve those
equations are described in the following section.
To explain the DEA method with equations, this paper

first defined some parameters. The number of decision
making units (DMUs) was defined as I (here, I = 100). For
every DMU, there are N inputs (here, N = 6) andM outputs
(here, M = 2), as listed in Table 1. For i-th DMU, the
column vectors xi and qi represent its inputs and outputs,
respectively. Then, for the total I DMUs, there is an N �I
input matrix, X, and M�I output matrix, Q. Then the
technical efficiency with CRS DEA model could be
measured as in the following linear programming:

maxv0,vðu0qi=v0xiÞ
st       u0qi=v0xi£1,             i ¼ 1,  2,  :::,  I

         u,   v³0

(3)

where u represents output weight vectorM�1; v represents
input weight vector N�1. For Eq. (3), there are infinite
results. To solve this problem, constraint v′xi = 1 was added
to Eq. (3). Then the linear programming could be
expressed as Eq. (4),

Table 1 Statistical characteristic of inputs and outputs

Item AP IA GW BW CF AM AV GO

Min 0.59 0.15 0.01 0.03 670.44 1.09 0.06 0.01

Max 262.75 57.33 10.47 51.43 586425.04 362.24 93.25 240.45

Mean 22.78 5.41 1.01 4.42 51549.67 27.93 12.43 19.71

SD 39.24 8.08 1.60 8.00 91880.34 46.61 18.41 37.73

C.V. 1.72 1.49 1.58 1.81 1.78 1.67 1.48 1.91

Note: “AP” represents agricultural population, 104; “IA” represents irrigated area, 103 hm2; “GW” represents green water, 108 m3; “BW” represents blue water, 108 m3;
“CF” represents chemical fertilizer, t; “AM” represents agricultural machinery, 104 kw; “AV” represents agricultural value, 108 CNY; “GO” represents grain output,
104 t.

Fig. 2 Production frontier and technical efficiency
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maxu,vðμ0qiÞ
st         v0xi ¼ 1

           μ0qi – v0xi£0,           i ¼ 1,  2,  :::,  I

           μ  ,  v³0

(4)

In Eq. (4), we use μ instead of u to indicate that the linear
programming is different. According to duality of linear
programming, Eq. (4) could be expressed as Eq. (5):

minθ,l   �i

st          – qi þ Ql³0          i ¼ 1,  2,  :::,  I

            �xi –Xl³0

            l³0

(5)

where θ is a scalar and λ is an I� 1 vector of constants. By
solving Eq. (5) I times, the efficiency value, θ, of each firm
can be obtained and it satisfies θ£1. If θ equals one, it
indicates that the DMU is a technically efficient irrigation
district. Otherwise, it means the DMU is technically
inefficient. If the efficiency value θ in a certain irrigation
district equals 1, this means that the DMU is a best practice
area and can serve as a benchmark for irrigation districts
whose θ is lower than 1.
Via Eq. (5) total technical efficiency (TTE) can be

measured. To calculate pure technical efficiency (PTE), the
convexity constraint I1′λ = 1 is added to Eq. (5), as shown
in Eq. (6), that is, VRS DEA method.

minθ,l   �i

st          – qi þ Ql³0

            θxi –Xl³0          i ¼ 1,  2,  :::,  I

            I 0l ¼ 1

            l³0

(6)

where I1′ is a vector whose elements all equal to 1, thus the
TTE score obtained by the CRS DEA method is
decomposed into two components, PTE score obtained
by VRS DEA method and SE. The relationship between
them is that TTE = PTE � SE.

2.4 Radial redundancy and slack redundancy

Technically inefficient DMUs have input redundancy or
they do not achieve their “target” outputs. With the input-
oriented DEA method, input redundancy is measured.
Corresponding to pure technical inefficiency and scale
inefficiency, input redundancy could be decomposed into
radial redundancy and slack redundancy. Radial redun-
dancy means the quantities of inputs which a certain DMU
could reduce in accordance with the same proportion[47].
For pure technically inefficient DMUs, all inputs have
radial redundancy. Slack redundancy is different from

radial redundancy and indicates decrements for individual
inputs of a certain DMU.
In this research, each irrigation district is a DMU and

there are 100 DMUs in total. For each DMU, based on the
chosen inputs and outputs, linear programming can be
done according to Eqs. (3)–(6). By solving linear pro-
gramming, TTE, PTE and SE for each DMU could be
measured. Meanwhile, the input redundancy of the
technically inefficient DMUs can be obtained by solving
the linear programming.
A great deal of computing software has been generated

to aid the application of the DEA method. DEAP 2.1 is one
of them that has been widely used. To operate DEAP 2.1,
input factors and output factors need to be edited correctly
in an EXCEL file then saved as a TXT file. Secondly, the
scale assumption, VRS or CRS, and the pattern, input-
oriented or output-oriented need to be set. Also parameters
such as the number of DMUs, input factors and output
factors need to be offered. When DEAP 2.1 is operated, the
embedded programs can be called and equations can be
calculated. TTE, PTE, SE score and input redundancy are
revealed in the outputs of DEAP 2.1. For this paper, as in
2.3, the number of DMUs is 100 and there are two kinds
(AVand GO) of output factors and six kinds (AP, IA, GW,
BW, CF and AM) of input factors for each DMU. In
summary, 200 output data and 600 input data, were filed
appropriately in a TXT file before operating DEAP 2.1.
Then with given parameters, DEAP 2.1 could be operated
and results analyzed based on the outputs of DEAP 2.1,
which is showed in results.

3 Results

3.1 Total technical efficiency

Results showed that of the 100 DMUs, 30 (30% of the
total) were overall technically efficient with TTE score
equal to one. The agricultural production of these units was
relatively efficient and they were benchmarks for the
technically inefficient DMUs. Figure 3 shows the TTE
score of every irrigation district. The average TTE score in
Northwest China was 0.770, suggesting that this area could
produce the same output with a 23% reduction in inputs. In
general, the TTE score in Ningxia (0.981) was the highest,
while that of Xinjiang (0.725) was the lowest. Partially,
these results might be influenced by the number of
irrigation districts because their provincial distributions
were not even. But most likely, it is because the irrigation
districts in Ningxia were along the Yellow River and the
government’s investment in improving its infrastructure
and training professional farmers has been greater.
Consequently, high-level agricultural management in this
area contributed to its high agricultural technical efficiency.
These objective and subjective factors do not compromise
the pragmatic value of this study. TTE scores for Shaanxi
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and Inner Mongolia were 0.868 and 0.802, respectively.
These results were not unexpected because irrigated
districts in Shaanxi Province were mainly located on the
Guanzhong Plain where agricultural management and
technology were relatively advanced. The TTE scores of
Gansu and Qinghai Provinces were 0.786 and 0.783,
respectively.
As shown in Table 2, the proportion of inefficient DMUs

over total DMUs in Qinghai, Ningxia and Shaanxi was
around 50%, and the proportion of inefficient DMUs in the
other three areas was over 66%. For those inefficient
DMUs, TTE scores varied from 0.313 to 0.966, showing
great geographical difference.
With this method of input-oriented DEA, the inefficient

DMUs indicate that it would be possible to reduce inputs
while maintaining the current output level. However, how
much effort would be required to improve the TTE score
depends on the current efficiency level, local resource
endowment and resource allocation. It may be somewhat
challenging for DMUs with relatively high TTE scores to
step to another level. Therefore, for this paper, inefficient
DMUs were grouped by TTE score and shown as
percentages in Table 3, so that suggestions could be
made according to the common characteristics of DMUs in
each group. Generally speaking, the results were consistent
with the data showed in Table 2, in that the distribution of
TTE score between the groups was uneven. It was obvious
that, except for Ningxia, the proportion of inefficient
DMUs, whose TTE score was below 0.600, was high
among local inefficient DMUs, especially in Qinghai
(100%) and Xinjiang (50%). For Northwest China as a
whole, the proportion was 46%. For DMUs with relative

high TTE scores, it could be challenging to improve
efficiency. However, for DMUs below 0.600, increasing
the TTE score to 0.600 maintaining the current level of
agricultural production would provide a great saving of
resources, indicating that in Northwest China there is still
considerable opportunity to improve agricultural produc-
tion.

3.2 Pure technical efficiency and scale efficiency

Pure technical efficiency (PTE) reflects whether the
potential technology for production was fully developed
or not. Scale efficiency measures whether production scale
and input allocations were reasonable. Apart from the 30
efficient DMUs, there were another 12 DMUs (42 DMUs
in total) with PTE score equal to one and two additional
DMUs (32 DMUs in total) with SE scores equal to one.
Average PTE score and SE scores in Northwest China were
0.825 and 0.931, respectively.
Figure 4 shows PTE and SE scores for each DMU. PTE

scores varied from 0.369 to 0.998 and among the 58 pure
technically inefficient DMUs the proportion of DMUs with
PTE score higher than 0.600 was 67%. The difference in
PTE score among DMUs was also significant. For the 68
scale inefficient DMUs, SE score varied from 0.395 to
0.999, with the lowest SE score in Qinghai, 97% of DMUs
with SE scores were above 0.6. Also, the percentage of
DMUs with an inefficient scale but with an SE score higher
than 0.8 was 81% of total scale inefficiency DMUs,
meaning that though 68 of 100 DMUs were inefficient in
scale, their SE scores were still relatively high and most SE
scores were clustered in high value groups. This means in

Fig. 3 Total technical efficiency for agricultural production of 100 irrigation districts in Northwest Arid Areas in China, 2010
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most arid areas in Northwest China, scale efficiency was
not as acute a problem as total technical efficiency or pure
technical efficiency was. Therefore, it was agricultural
technology not production scale that was likely to be
responsible for the low value of TTE for most irrigation

districts. This paper drew a conclusion that agro-technique
must be made full use of in order to improve efficiency,
especially for those areas with high scale efficiency and
low total technical efficiency. Certainly, for DMUs whose
PTE score equal to one, the only way to improve their

Table 2 Statistical characteristic of total technical efficiency score for inefficient DMUs of Northwest Arid Areas in China in 2010

Area % Min Max Mean Std. v

Inner Mongolia 66.66 0.478 0.830 0.703 0.157

Gansu 78.95 0.436 0.966 0.729 0.180

Ningxia 50.00 0.961 0.961 0.961 0.000

Qinghai 46.15 0.394 0.595 0.530 0.078

Shaanxi 54.55 0.424 0.951 0.757 0.211

Xinjiang 77.55 0.313 0.958 0.646 0.175

Northwest China 70.00 0.313 0.966 0.671 0.058

Table 3 Inefficient DMUs (%) grouped by total technical efficiency in Northwest Arid Areas in China in 2010

Area Number
Proportion of DMUs in each group/%

0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6 0.4–0.5 0.3–0.4

Inner Mongolia 4 – 25 50 – – 25 –

Gansu 15 33 – 20 20 13 13 –

Ningxia 1 100 – – – – – –

Qinghai 6 – – – – 66 17 17

Shaanxi 6 33 33 – – 17 17 –

Xinjiang 38 8 13 18 11 34 8 8

Northwest China 70 16 11 17 10 29 11 6

Note: – indicates no inefficient DMUs in the group.

Fig. 4 Pure technical efficiency (PTE) and scale efficiency (SE) of 100 irrigation districts of Northwest Arid Areas in China in 2010

Yubao WANG et al. Assessing agriculture efficiency in Northwest China with DEA 201



agricultural technical efficiency would be to adjust their
production scale.
Generally, it is considered that intensive production

would be more efficient than decentralized production. For
example, Wan and Cheng found that simply by eliminating
land fragmentation, the grain production of China would
rise by 71.4 Mt[48]. Thus, this paper calculated both area-
weighted average value and arithmetic average value for
TTE, PTE and SE to assess if larger irrigation districts
would have a relatively higher efficiency value. The
formulas were shown as Eq. (7) and Eq. (8), respectively.

TTE
0
j ¼

X
TTEi � IAiX

IAi

(7)

where TTEj′ is the area-weighted average value of TTE for
j-th province; TTEi is the original TTE calculated by
DEAP 2.1 for i-thDMU in j-th province, IAi is the irrigated
areas of i-th DMU in j-th province. Similarly, PTE′and SE′
can also be calculated.

ATTEj ¼
X

TTEi

n
(8)

where ATTEj is the arithmetic value of TTE for j-th
province; TTEi has the same meaning as in Eq. (7), n is the
number of DMUs in j-th province. Similarly, APTEj and
ASEj can also be calculated.
For Inner Mongolia, Ningxia and Xinjiang areas,

irrigation areas varied from less than 15 to nearly 600
thousand hectares, and the TTE score showed the rough
trend that the larger the irrigation areas were, the higher the
TTE score was. For the 43 irrigation districts in Shaanxi,
Qinghai and Gansu Provinces, the irrigation areas were all
less than 5 thousand hectares in Qinghai Province, around
22 thousand hectares in Gansu Province, and around
47 thousand hectares in Shaanxi Province. Thus, irrigation
areas in these three provinces were relatively small and
the proportion of small irrigation districts was relatively
higher than that in Inner Mongolia, Ningxia and Xinjiang
areas. Table 4 showed the area-weighted average values for
Inner Mongolia, Ningxia, Xinjiang and Northwest China
were higher than their arithmetic average values, while

area-weighted average values for Gansu, Qinghai and
Shaanxi Province were smaller or close to their arithmetic
average values. This confirmed our conjecture that larger
irrigation districts had more access to advanced techno-
logies and can allocate resources more effectively and thus
be more technically efficient.
In terms of status of production scale, 58% DMUs with

SE score less than 1 were at DRS. For these irrigation
districts, it would be unreasonable to enlarge their
production scale. At the provincial level, all scale
inefficient DMUs in Inner Mongolia were at DRS. In
Gansu, Shaanxi and Xinjiang areas, the proportion of
DMUs at DRS were 62%, 83% and 57%, respectively. In
Xinjiang, the DMUs at IRS were mostly under centralized
management and owned by government. There were two
possible explanations for this. Firstly, compared with
farmland owned by household farmers, these irrigation
districts had much greater access to advanced agricultural
technology; secondly, the farmland was operated as a
whole, therefore resource allocation was more appropriate
and management was more precise. Therefore, if possible,
these DMUs could increase their production scale to
improve SE scores. Scale inefficient DMUs in Qinghai
Province were all at IRS and could increase their
production scale to achieve higher efficiency.
Based on these results, this paper concluded that

resource allocation has been inefficient in traditional
agricultural areas of Northwest China. Excessive inputs
have been common and production scale for agriculture
should decrease as a whole, while centralized management
of agricultural areas and areas thought to have no
advantage for development of agriculture could increase
their production scale.

3.3 Analysis of radial and slack movement

Only pure technically inefficient DMUs have input
redundancy, i.e., about 58 of the 100 DMUs in this
study. Table 5 shows the percentage of redundancy over
original inputs. First, it was not unexpected that lower TTE
score was associated with higher input redundancy. Also,
input redundancy was mainly caused by pure technical

Table 4 Area-weighted and arithmetic average value of total technical efficiency (TTE), pure technical efficiency (PTE) and scale efficiency (SE)

Area
Area-weighted average value Arithmetic average value

TTE′ PTE′ SE′ ATTE APTE ASE

Inner Mongolia 0.926 0.965 0.955 0.802 0.899 0.886

Gansu 0.775 0.802 0.964 0.786 0.815 0.962

Ningxia 0.994 1.000 0.994 0.981 1.000 0.981

Qinghai 0.769 0.851 0.899 0.783 0.884 0.883

Shaanxi 0.856 0.901 0.953 0.868 0.895 0.970

Xinjiang 0.755 0.822 0.913 0.725 0.781 0.927

Northwest China 0.813 0.865 0.934 0.770 0.825 0.931
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inefficiency. Therefore, for DMUs locating in the range 0.3
to 0.4, the redundancy percentage was lower or close to
that of DMUs in the range 0.4 to 0.5. In addition, with a
critical efficiency value (TTE score) of 0.7 and above, the
average redundancy percentage of all input factors was
around 20%; while for a value of 0.7 or below, the average
redundancy percentage of all input factors was more than
35%. Therefore, this paper drew the conclusion that it is
very urgent for these DMUs to make full use of agricultural
technical advantages in order to achieve high use
efficiency of resource and sustainable development of
agriculture. Even small enhancements in efficiency value
could make a big difference in reducing input redundancy.
For DMUs with input redundancy, the proportion of

DMUs at IRS was 45%. From the last column in Table 5,
we observed that the lower the TTE score, the higher the
percentage of DMUs at IRS. Therefore, if it would be
difficult for these DMUs to make full use of its potential
technology, then at least production scale could be
increased without changing the input level.
Input redundancy for all areas is given in Table 6. DMUs

in Ningxia had pure technical efficiency and therefore were
without input redundancy. In Northwest China, the
percentages of redundant input for AP, IA, GW, BW, CF
and AM were 34.88%, 40.19%, 43.85%, 47.10%, 41.53%
and 42.21%, respectively. In particular, radial movement of
inputs was around 30.00% of current input and GW and
BW had relatively high slack movement. There were two
possible explanations for this. The first could be that green
water (rainfall) was insufficient in this area, however, the
farmers lacked both the awareness and technology to use
this limited green water efficiently. Alternatively, it could
be that administrators of irrigation districts often adopted a
rotation flow system, so farmers overuse blue water
(irrigation water) when it was their turn for fear that
there might be insufficient water available at the next
irrigation. These two possibilities could also explain why
slack movements of GW and BW were larger than other
input factors in Inner Mongolia, Qinghai and Xinjiang.
This has to be changed; otherwise, it could result in
deterioration of agricultural production; reducing water

misuse may be the important factor that could lead to
agricultural sustainable development in these areas.
Percentage of input redundancy varied between areas.

For instance, redundant percentage of AP in Qinghai
Province was more than 60%, which was three times that
of Inner Mongolia. This could be explained by the fact that
agricultural population per DMU in Qinghai was 3.7 times
greater than that in Inner Mongolia. Apart from radial
movement, all input factors had slack movement for those
DMUs in Qinghai. This was consistent with the conclusion
that they could increase their production scale. Second
only to Ningxia, the PTE score for Inner Mongolia was
0.899. This explains why its radial movement was smaller
than that for the other four areas, which had radial
movements for input close to 30% or more. Therefore, it
was still urgent to guide farmers to make good use of
agricultural technology and invest properly for agricultural
production in these regions. All these findings indicate that
each district has its unique characteristics, thus methods for
improvement differ accordingly. Agriculture is not a
monolithic operation, instead, it should be practiced with
attention to local factors and intensive care.

4 Discussion

Data envelopment analysis is an efficient and widely used
method for assessment of technical efficiency. This
research evaluated the TTE, PTE and SE of 100 irrigation
districts in Northwest China via both CRS and VRS input-
oriented DEA method. The purpose was to guide policy
makers and farmers to allocate agricultural inputs appro-
priately according to its production scale so that “double
high” agriculture could be achieved, which means high
yield with high technical efficiency. Meanwhile, Northwest
China is an ecologically vulnerable area because of the
limited access to water and much agricultural pollution.
Therefore, proper guidance for agriculture to reduce water
and fertilizer inputs will also benefit this area’s ecology.
Firstly, the average value of TTE, PTE and SE of

irrigation districts in Northwest China were 0.770, 0.825

Table 5 Redundancy percentage over original inputs

Range Number of DMUs TTE PTE SE AP IA GW BW CF AM Proportion of IRS DMUs

0.9–1.0 6 0.93 0.95 0.97 5.47 22.14 14.49 5.78 31.35 31.64 17

0.8–0.9 3 0.85 0.87 0.97 17.25 18.33 18.77 28.22 17.78 21.31 33

0.7–0.8 10 0.76 0.84 0.92 18.67 29.10 27.22 37.72 25.80 26.94 50

0.6–0.7 7 0.64 0.67 0.96 38.58 47.89 38.57 48.69 37.36 49.06 57

0.5–0.6 20 0.56 0.62 0.91 45.22 46.33 50.94 54.09 47.69 50.34 35

0.4–0.5 8 0.45 0.53 0.88 55.19 55.92 56.82 64.17 63.57 59.48 63

0.3–0.4 4 0.35 0.59 0.68 47.13 47.08 61.63 51.48 67.36 45.29 75

Note: TTE, total technical efficiency; PTE, pure technical efficiency; SE, scale; AP, agricultural population, 104; IA, irrigated area, 103 hm2; GW, represents green
water, 108 m3; BW, blue water, 108 m3; CF, chemical fertilizer, t; AM, agricultural machinery, 104 kw.
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and 0.931, respectively. This indicated that 23 percent of
inputs could be reduced without decreasing agricultural
outputs. The average value of SE was relatively high at
0.931. This indicated that agricultural production scale in
Northwest China was not such an acute challenge as
agricultural technology has been. This indicated that it was
agricultural technology not production scale that should
take more responsibility for low total technical efficiency.
This conclusion was also confirmed by the finding that the
geographical difference of PTE was more consistent with
that of TTE, while the value of SE was clustered in high
value range. Of all DMUs 97% had SE scores higher than
0.600.
Secondly, the percentage of total technically efficient

DMU, pure technically efficient DMU and scale efficient
DMU was 30%, 42% and 32%, respectively. For pure
technical inefficient DMUs, their input redundancy was
large. For Northwest China, the percentages of input
redundancy over original input for AP, IA, GW, BW, CF
and AM were 34.88%, 40.19%, 43.85%, 47.10%, 41.53%
and 42.21%, respectively. The above two points should
attract the attention of policy makers and farmers. Among
agricultural inputs, AP and AM are both equivalence to
agricultural labor and carry with them more than 30.0%
input redundancy. On the one hand, due to its under-
developed economy, farmers in Northwest China
depended heavily on their farmland. Though labor transfer
is happening with the process of urban expansion,
traditional farmers still view agricultural operations as a
guarantee for their income. Thus, there was no surprise in
AP over input. For AM, farmers that own harvesting and
seeding machinery may lend their equipment to farmers
who are able to pay, but the private ownership of AM
makes it difficult for some farmers for whom the rental is
too high to pay. In addition, fragmentary land owned by
separate farmers also limits the use of AM. Theoretically
speaking, the inputs of agricultural labor and agricultural
machinery should be regulated as a whole because they are
complementary to each other. But the private ownership of
AM and lacking of overall planning leads to inputs
redundancy of AM and AP. The overall inputs of IA, GW,
BW and CF did not only have influence on low total

technical inefficiency and could also harm ecological
environment in Northwest China. Irrigation authorities and
farmers there have perceived that without irrigation there
would be no agriculture. Consequently, with the practice of
rotation irrigation farmers just let their farmland become
saturated for they are fear of that there would be no more
water for them to do the next irrigation. Obviously, this
deep-rooted sense of potential crisis may drive them to
overuse BW and IA. Though rainfall (GW) is scarce,
farmers lack the knowledge and the technology to make
full use of GW. Thus, redundancy of GW is also large.
Both the low percentage of technically efficient DMUs and
the high percentage of overuse inputs show that there is
still huge room for Northwest China to improve its
agricultural technical efficiency.
Lastly, nearly 60% of scale inefficient DMUs were at

DRS. While for irrigation districts under management of
Xinjiang Production & Construction Group and irrigation
districts in Qinghai Province, places regarded as having no
advantage to develop agriculture, were all surprisingly at
IRS. This finding verified that compared with fragmentary
farmland, centralized management was more successful in
improving agricultural technical efficiency and could
allocate agricultural inputs more precisely.

5 Conclusions

Northwest China, the most arid area in China, plays an
important role in grain supply and thus contributes
significantly to food security in China. However, Northwest
China is also a relatively undeveloped area and its
agricultural production is sluggish and conservative.
Even so, as a typical arid area, its agricultural technical
efficiency has not been investigated before. This paper
adopted the DEA method to evaluate TTE, PTE and SE of
100 irrigation districts in this area. The unique contribution
of our research is that this paper is the first to assess
agricultural technical efficiency for irrigation districts in
the most arid areas of China; secondly, it analyzes in details
the extent to which inputs could be reduced. Thirdly, it
reminds policy makers of the need to inspect the traditional

Table 6 Percentage of slack movement and radial movement over original input

Area
Percentage of slack movement/% Percentage of radial movement/%

AP IA GW BW CF AM AP IA GW BW CF AM

Inner Mongolia 0.00 3.38 22.98 8.79 0.00 3.42 19.38 17.89 18.69 17.19 17.91 17.91

Gansu 2.21 13.13 3.24 0.89 14.60 25.86 26.90 26.41 29.62 27.06 27.56 26.86

Qinghai 37.25 0.19 11.83 19.62 12.54 25.41 22.96 28.60 28.73 28.52 30.08 30.04

Shaanxi 0.00 0.49 3.38 1.06 4.98 5.02 33.98 36.29 35.30 38.80 36.30 36.30

Xinjiang 5.45 9.01 12.31 17.35 9.39 4.93 33.49 33.79 35.28 33.68 32.96 33.30

Northwest China 4.05 8.44 10.63 14.85 9.07 11.49 30.83 31.76 33.21 32.25 32.46 30.72

Note: AP, agricultural population, 104; IA, irrigated area, 103 hm2; GW, represents green water, 108 m3; BW, blue water, 108 m3; CF, chemical fertilizer, t;
AM, agricultural machinery, 104 kw.

204 Front. Agr. Sci. Eng. 2017, 4(2): 195–207



agricultural areas from the perspective of efficiency. The
main conclusions of this paper are as follows:
Firstly, there are still many irrigation districts with

relatively low TTE and PTE. Also the percentage of input
redundancy was high, around 40%, indicating that there
was huge room for Northwest China to improve its
agricultural technical efficiency. Based on our research,
agricultural technology instead of production scale bore
greater responsibility for low TTE. Therefore, some
suggestions for policy makers to follow are: (1) they
should improve local agricultural technology, such as
transforming flood irrigation into water-saving irrigation;
(2) it is time to carry out land transaction to centralize
agricultural management, thus comprehensively regulating
agricultural inputs as a whole. In this way, resources could
be allocated more precisely, thus achieving the goal of
“double high” agriculture.
Secondly, this paper found that the proportion of TTE

with scores lower than 0.600 was around 46%. Therefore,
if it is difficult for irrigation districts with high TTE score
to move to another level, it should be a priority for the
irrigation districts with low TTE score. After all, due to its
high percentage, if TTE scores for these irrigation districts
could be improved, lots of resources would be saved. In
addition to that, this paper found that the traditional
agricultural areas were often over explored and the
production scale of these areas tended to locate at the
decrease return to scale. In contrast, production scale for
those areas that were thought to have no advantage to
develop agriculture tended to locate at increase return to
scale. Therefore, with food security becoming a more
serious issue, policy makers should not ignore these areas
any more. Meanwhile, agriculture is closely related with
the geographical and meteorological features of an area,
thus intensive care and analysis should be given before
exploring these areas.
Of course, like many other researches, there were a few

uncertainties in this paper due to the absence of data:
(1) we assumed that these irrigation districts were
sufficiently homogeneous in terms of environmental
factors including geography, soil quality, weather and
social-economic characteristics; (2) the differences of plant
structures were ignored in this paper. This paper only
aggregated agricultural output into grain production and
agricultural value, though the symmetric disturbance term
absorbs a certain amount of unobserved factors, which
may lead to a discrimination of efficiency. After all, some
crops do need more resources to produce the same amount
of outputs than other crops in a given meteorological and
geographical situation. If possible, these factors should be
taken into account to make more precise assessments in
future.
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