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Abstract Electrolyzed water (EW) can be produced by
electrolysis of a dilute salt solution. Slightly acidic
electrolyzed water (SAEW, pH 5.0–6.5) and neutral
electrolyzed water (NEW, pH 6.5–8.5) are considered
healthy and environmentally friendly because no hazar-
dous chemicals are added in its production, there is
reduced corrosion of surfaces and it minimizes the
potential for damage to animal and human health. Over
the last decade, EW has become increasingly popular as an
alternative disinfectant for decontamination in animal
houses. However, there have been some issues related to
EW that are not well known, including different
mechanisms for generation of SAEW and NEW, and the
antimicrobial mechanism of EW. This review covers the
definitions of SAEW and NEW, different generation
systems for SAEW and NEW, the antimicrobial mecha-
nism of EW, and recent developments related to the
application of SAEW and NEW in animal houses.
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1 Introduction

The environment within animal houses is often contami-
nated with pathogenic microorganisms and contaminated
surfaces in such facilities may act as reservoirs for
pathogenic microorganisms[1–3]. Exposure to high levels
of airborne microbes in animal houses can have negative
impacts on the health of both the animals and the
workers[4–7]. Microorganisms contaminating animal
houses are also responsible for disease infection among
animals[8,9] and can even enter the food chain[10,11].
Provision of healthy environments for animal production
is receiving increased attention.

Disinfection is a commonly recommended approach for
disease prevention in animal houses[12–15]. This can help to
lower the potential for disease infection and transmission
in animal houses by reducing the population of pathogenic
microorganisms on the surfaces or in the air. Numerous
chemical disinfectants such as benzalkonium chloride,
formaldehyde and glutaraldehyde are used for disinfection
against bacterial infections in animal houses[16]. However,
the use of these chemical disinfectants has limited potential
due to their toxicity, corrosiveness and/or volatility[17].
Also, the resistance and cross-resistance of pathogens to
chemical disinfectants has been reported[18,19]. Therefore,
it is essential to develop alternative disinfectants for
decontamination in animal houses.
Electrolyzed water (EW) has been regarded as a novel

sanitizer in recent years. Acidic electrolyzed water (AEW,
pH< 2.7), slightly acidic electrolyzed water (SAEW pH
5.0–6.5) and neutral electrolyzed water (NEW, 6.5–8.5) are
the three main types of EWs reported as alternative
disinfectants for decontamination. AEW has been reported
to be an effective antimicrobial agent in the food
industry[20–22]. However, AEW can easily release Cl2 gas
due to its volatility, which causes chlorine loss, thus
decreasing AEW bactericidal activity over time[23,24]. The
strong acidity (pH< 2.7) of AEW can also cause corrosion
of equipment[25]. These disadvantages potentially limit the
use of AEW in some applications such as animal houses. In
contrast, SAEW and NEW are near neutral pH and more
stable than AEW[24]. They have been increasingly used for
the prevention and control of microorganisms[22,26–28].
SAEW and NEW are considered healthy and environmen-
tally friendly because no hazardous chemicals are added in
its production, they cause less corrosion of surfaces and
minimize the potential for damage to animal and human
health[25,29,30]. For these reasons, SAEWand NEWmay be
alternative disinfectants for decontamination in animal
houses. A considerable number of studies have reported
the increased use of SAEW and NEW for controlling
contamination in animal houses, including facilities for
swine, poultry and diary[1–3,15,31–35]. This review covers
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some important aspects of SAEW/NEW, including defini-
tion, generation, microorganism inactivation and applica-
tions in animal houses.

2 Electrolyzed water (EW)

Electrolyzed water (EW) was initially used for inactivation
of pathogens in health care facilities in Japan. AEW, also
known as electrolyzed oxidizing water, is produced by
electrolysis of a dilute salt solution in an electrolytic cell,
within which the anode and cathode are separated by a
membrane. By subjecting the electrodes to direct current
voltages, negatively charged ions such as chloride and
hydroxide move to the anode to give up electrons and
become gaseous oxygen (O2) and chlorine (Cl2), hypo-
chlorite ions (OCl–), hypochlorous acid (HOCl) and
hydrochloric acid (HCl). Concurrently, positively charged
ions, such as hydrogen and sodium, move to the cathode to
take up electrons and become hydrogen gas (H2) and
sodium hydroxide (NaOH)[36]. As a result, AEW with low
pH and available chlorine is produced at the anode.
Alkaline EW, also called electrolyzed reduced water with
high pH (10.0–11.5) is produced at the cathode. The
principle of producing AEW can be described with the
following:

Anode : 2H2O – 4e – ↕ ↓4eþ þ O2 "

2Cl – – 2e – ↕ ↓Cl2 "

Cl2 þ H2O↕ ↓Hþ þ Cl – þ HOCl

HOCl↕ ↓Hþ þ OCl –

Cathode : 2H2Oþ 2e – ↕ ↓2OH – þ H2 "
Scientists have given various names to EW with a pH of

5.0–6.5, but none of these names has been universally
adopted. Most studies have defined EW with a pH of 5.0–
6.5 as SAEW[1–3,15,28,33,37–57]. However, it has also been
called electrolyzed neutral water [58], near-neutral electro-
lyzed oxidizing water[25,59] and NEW[24,48,60,61]. It is
important to distinguish SAEW and NEW using an agreed
standard. In this review, EW with a pH of 5.0–6.5 and 6.5–
8.5 are defined as SAEW and NEW, respectively.
Available chlorine, also called free chlorine, has been

considered to be the active component of EW responsible
for its bactericidal activity. The pH of EW is important in
the formation of various chlorine species. The relative
levels or proportions of available chlorine compounds
(Cl2, HOCl and OCl–) in EW are pH dependent[21,23,38].
Bactericidal activity of HOCl is much higher than that of
OCl–[21,38]. The highest proportion of HOCl of EW was
found to be generated at around pH 4–5. More Cl2 was

generated from HOCl at a lower pH, whereas more OCl–

was generated from HOCl at a higher pH[23]. At pH 5.0–
6.5, the effective form of chlorine in SAEW is mostly
HOCl, which has been shown to have strong antimicrobial
activity[30,37,62]. For NEW with pH 6.5–8.5, the effective
form of chlorine is mainly OCl–. Therefore, SAEW was
reported to have a higher bacterial activity than NEWat the
same available chlorine concentration (ACC)[46]. The
available chlorine and its proportion in SAEW and NEW
is considered to be the main factor affecting their
antimicrobial activity.

3 Generation systems for SAEW and NEW

The principles of producing SAEWand NEWare the same
as AEW, but their generation systems are modified to reach
the desired pH. SAEW has been reported to be produced
by electrolysis of dilute NaCl and/or hydrochloric acid
solutions in an electrolysis cell without a mem-
brane[15,38,63], or by redirecting the product formed at the
cathode into the anode chamber while electrolyzing a
dilute NaCl solution in a cell with a separating mem-
brane[25]. NEW has been reported to be produced by
electrolyzing a dilute NaCl solution in an electrolysis cell
without membrane with or without dilution with tap water
after electrolysis[27,32], or by redirecting the product
formed at the cathode into the anode chamber while
electrolyzing a dilute NaCl solution in a cell with a
separating membrane[64]. Production systems for generat-
ing SAEW and NEW described in previous studies are
shown in Table 1.
One common system is to generate SAEW by electro-

lysis of a dilute HCl solution in a non-membrane
electrolytic cell, then the highly concentrated HOCl
produced is diluted with tap water[38]. The electrolyte in
this system is a dilute HCl solution, but a NaCl solution
can also be used as the electrolyte[39,45,63]. The SAEW
generated in this system usually has a low ACC (5–
50 mg$L–1, preferably 20–30 mg$L–1), but most of the
available chlorine is present as HOCl[24,38,46]. This system
has been widely employed to generate SAEW with a low
ACC for decontamination in the food industry. Another
system is to generate SAEW by electrolyzing dilute NaCl
and HCl solutions in a non-membrane electrolytic cell. In
this system, NaCl provides most of the Cl– to generate
available chlorine, and HCl is mainly to adjust the pH to
5.0–6.5. HCl solution can also be added after electrolyzing
a dilute NaCl solution to adjust the pH[33,79,80]. Zheng
et al.[46] reported that the available chlorine composition
was similar for SAEW generated by adding HCl solution
either before or after electrolyzing a dilute NaCl solution.
Using this system, SAEW with a large range of ACC was
generated, from 0.5 to 400 mg$L–1 [1,2,15,41,54,68,69]. NEW
is produced when a dilute NaCl solution is electrolyzed in a
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non-membrane electrolytic cell. One system is to produce
NEW with a desired ACC directly. The other system is to
produce EW with highly concentrated available chlorine
that is then diluted with tap water to NEW, as is done with
chemical sanitizers. AEW is produced by electrolysis of a
dilute salt solution in an electrolytic cell, within which the
anode and cathode are separated by a membrane. This
system for generating AEW can also be used to produce
SAEWand NEW, by redirecting the product formed at the
cathode into the anode chamber. SAEW or NEW is
produced depending on the mixing proportion of the
electrolyzed reduced water formed at the cathode and the
AEW formed at the anode. Different systems can produce
SAEW/NEW with different properties. Even at the same
pH and ACC, the active components of EW can be
different[46]. The generation mechanism can be an
important factor affecting the active components of
SAEW and NEW, and thus their antimicrobial activities.

4 Antimicrobial activities of SAEW and
NEW

SAEW is promoted as a highly effective, healthy and
environmentally friendly disinfectant for the food indus-
try[25,37,38,44,81]. It has been reported to possess high
antimicrobial activity against a broad spectrum of micro-
organisms, including Bacillus cereus[52], Bacillus
subtilis[42], Escherichia coli[40,41,43,44,61,65,68], Listeria
monocytogenes[45,67], Salmonella enteritidis[37,46,67,68],
Salmonella spp[44], Staphylococcus aureus[40,41], Vibrio
vulnificus and Vibrio parahemolyticus[81,82], mold and
yeast[3], porcine reproductive and respiratory syndrome
virus, and pseudorabies virus[49]. The antimicrobial
activity of SAEW relies on its available chlorine, primarily
HOCl, which has strong antimicrobial activity[23,30,46,62].
NEW has also been employed to inactivate a variety of

microorganisms, including Alicyclobacillus acidoterrestris
spores[78], B. subtilis[75], E. coli[26,29,46,72–75], Erwinia
carotovora[27], L. monocytogenes[26,27,29,74], Monilinia
fructicola and Botrytis cinerea[83], Salmonella
spp[27,46,73,74], S. aureus[26,29], Pseudomonas aerugi-
nosa[26,29], V. vulnificus and V. parahemolyticus[72],
Fusarium spp[60]. and avian influenza viruses[84]. The
antimicrobial activity of NEW relies on its available
chlorine. Compared to SAEW, more available chlorine is
present as OCl– when HOCl is converted to OCl– with an
increased pH[46].
Bacteria can generally grow in the pH range of SAEW

and NEW. The pH is important in the antimicrobial
activities of SAEW and NEW, mainly by influencing the
formation of various available chlorine species. Under-
standing the antimicrobial mechanism of EW is crucial to
enable better utilization of EW as an antimicrobial agent.
However, little information has been published to explain
the antimicrobial mechanism of EW. In general, it is well
known that available chlorine compounds are responsible
for the antimicrobial activity of EW. Other oxidants, such
as the reactive oxygen species (ozone and hydrogen
peroxide), generated during electrolysis, are also con-
sidered to contribute to the antimicrobial activity of
EW[85,86]. Some researchers have suggested that high
oxidation-reduction potential (ORP) of AEW contributes
to its high antimicrobial activity[87,88]. The oxidation,
resulting from the high ORP of AEW, probably damages
cell membranes and disrupts cell metabolic processes.
However, SAEW and NEW have been employed to
inactive a variety of microorganisms, even without a
high ORP, such as AEW (ORP> 1100 mV). Koseki et
al.[89] reported that the higher ORP of ozonized water did
not give a higher antimicrobial effect than the lower ORP
of EW. This suggests that high ORP is not the determining
factor in the antimicrobial activity of EW. It also has been
noted that the low pH of AEW may reduce bacterial

Table 1 Types of generation systems for SAEW and NEW

Electrolyzed water Electrolyte/Electrolytic cell Generation mechanism References

SAEW HCl/Non-membrane Dilute HCl or NaCl solution is electrolyzed in a non-
membrane electrolytic cell to produce highly concentrated
HOCl, which is then diluted with tap water.

[28,37,38,40,43,44,47,51–53,55,57,65–67]

SAEW NaCl and HCl/Non-membrane Dilute NaCl and HCl solution is electrolyzed in a non-
membrane electrolytic cell.

[1,2,15,41,54,61,68,69]

NEW NaCl/Non-membrane Dilute NaCl solution is electrolyzed in a non-membrane
electrolytic cell.

[60,70–73]

NEW NaCl/Non-membrane Dilute NaCl solution is electrolyzed in a non-membrane
electrolytic cell to produce EW with highly available
chlorine, which is then diluted with tap water.

[26,27,29,32,74,75]

SAEW or NEW NaCl/Membrane Dilute NaCl solution is electrolyzed in an electrolytic cell
with a membrane. A certain proportion of the Alkaline
EW formed at the cathode chamber is redirected into the
anode chamber.

[25,34,46,64,76–78]

Note: SAEW, slightly acidic electrolyzed water; NEW, neutral electrolyzed water; EW, electrolyzed water.
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growth and sensitize the outer membrane of bacterial cells
to the entry of active compounds[90,91].
Feliciano et al.[92] investigated the structural changes to

E. coli and Listeria innocua cells treated with AEW and
NEW by transmission electron microscopic analysis.
Exposure to AEW and NEW decreased the integrity of
the cell envelope and caused aggregation of the cytoplas-
mic components. Similar structural damage to E. coli
O157:H7 and S. aureus by SAEW has been reported[41].
The research on disinfection mechanisms conducted by
Zeng et al.[93] revealed that AEW could rapidly decrease
the dehydrogenase activities of E. coli and S. aureus,
resulting in inhibition of respiration and anabolism. AEW
exposure can increase the membrane permeability of the
cells and cause leakages of intracellular DNA, K+ and
proteins, and some intracellular proteins are destroyed.
Several studies have shown that HOCl penetrates bacterial
cell membranes and produces hydroxyl radicals[94–96].
These radicals are known to exert antimicrobial activity by
causing the oxidation of key metabolic systems in
bacteria[21]. Fukuzaki[97] developed a model to explain
the antimicrobial mechanism of sodium hypochlorite. This
model suggest that the antimicrobial activity of EW is
governed by HOCl and OCl–. The antimicrobial action of
HOCl is attributed to its penetration into microbial cells
across the cell walls and membranes. As a result, HOCl can
attack the microbial cell not only from the outside, but also
from within the cell. OCl– is unable to penetrate the
microbial cell membrane because of the existence of the
lipid bilayer, but it can still impose oxidizing action from
outside the cell. The microbial cell wall and membrane can
thus be ruptured or disintegrated by exposure to OCl–,
following the inactivation of functional proteins localized
in the plasma membrane. The inhibition of enzyme activity
essential for microbial growth, damage to the membrane
and DNA, and perhaps deterioration in membrane
transport capacity are believed to be responsible for the
antimicrobial activity of HOCl and OCl–, although these
factors have not been fully examined[22].

5 SAEW and application in animal houses

Animal houses are often contaminated with high concen-
trations of microorganisms which have multiple adverse
environmental and health effects on both animals and
workers. Removal of microbial contaminants in animal
houses is receiving increased attention. In recent years,
spraying or soaking using SAEW or NEW has been
introduced to lower the microbial contaminant concentra-
tions in animal houses to prevent diseases, mainly for
surface and air disinfection. They are considered as
alternative disinfectants for decontamination in animal
houses because of their high antimicrobial activity,
environmental safety, reduced corrosion of surfaces, and
minimization of the potential for damage to animal and

human health. SAEW is much more often employed for
disinfection in animal houses than NEW.

5.1 Surface disinfection

Table 2 illustrates the effectiveness of SAEW in reducing
the microbial populations on the surfaces in animal houses.
Spraying or flushing using SAEW has proven to be highly
effect in reducing microbial populations on the structural
and equipment surfaces. Increasing the ACC of SAEWand
the spraying or flushing volume can improve the
antimicrobial effectiveness on these surfaces. Additionally,
Zang et al.[98] reported that cleaning with tap water and
spraying SAEW can inactivate S. enteritidis on the surface
of plastic cages used for poultry transport. The inactivation
activity increased with increasing cleaning time, treatment
time and ACC of the SAEW. Spraying SAEW is also
suggested to be a sanitizing solution for eggshells[37,50]. It
is reported that SAEW has an equivalent or higher
efficiency in reducing E. coli O157:H7, S. aureus,
S. enteritidis and indigenous microbiota present on egg-
shells compared to chlorine dioxide and NaOCl solution,
and has similar bactericidal activities with AEW at the
same ACC (60–100 mg$L–1). Several researchers have
reported that organic matter, such as protein compounds,
can reduce the bacterial activity of EW[3,99–102]. Significant
amounts of organic matter are usually attached to the
structural and equipment surfaces in the animal houses. In
addition to increasing the ACC of SAEWand the spraying
or flushing volume, cleaning before disinfection can also
be employed to improve the antimicrobial effectiveness for
these surfaces.

5.2 Air disinfection

The sanitizing potential of spraying SAEW on airborne
microbes in animal houses is shown in Table 3. The
airborne microbial populations in poultry houses increase
during in the day. This may be because the continuous
movement of birds can lead to more microorganisms in the
air[54]. The airborne microbial population after spraying
SAEW is significantly lower than for the untreated control
(Table 3). Spraying SAEW or NEW is suggested to be an
efficient approach to reduce airborne bacterial contamina-
tion in layer poultry houses. The ability of spraying SAEW
to reduce airborne bacterial contamination in a layer house
showed a dosage-dependent relationship with the ACC of
SAEW and the spraying volume[15,75]. Spraying NEW has
also been reported to reduce airborne particulate matter to
which microbes attach in a layer breeding house[32]. When
comparing the change in airborne microbial populations
after spraying SAEW or water in a layer chamber, Zheng
et al.[33] demonstrated that airborne culturable bacteria
were reduced more by the bactericidal effect of SAEW
than by the reduction in airborne particular matter. In
addition to the ACC of SAEW and the spraying volume,
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the size of sprayed aerosols and the ventilation can
influence the inactivation efficiency of spraying SAEW or
NEWon airborne microbes. Chuang et al.[75] evaluated the
inactivation efficiency of spraying NEW on E. coli and B.
subtilis bacterial aerosols in a controlled environment
chamber. The results indicated that spraying NEW is likely
to be effective in inactivation of airborne bacterial
contamination. Moreover, an increase in ventilation rate
(air exchange rate 0.5–1.0 per hour) and increase in aerosol
count median diameter of sprayed aerosols (0.12–0.2 mm)
may facilitate the inactivation efficiency. Available
chlorine loss caused by spraying is greatly dependent on
the size of sprayed aerosols. The size of sprayed aerosols
can also influence the gas-liquid contact, which is
important for the probability of exposure of airborne
microbes to sprayed SAEW or NEW aerosols. Smaller
sprayed aerosols may promote the gas-liquid contact but
cause greater loss of available chlorine during spraying.
Zhao et al.[79] reported an initial available chlorine loss of
11.7%–13.2%when spraying SAEWwith an aerosol count
median diameter of 80 mm. Our recent study evaluated the
reduction efficiency of airborne culturable bacteria by
spraying SAEW with different aerosol count median
diameters in a controlled environment chamber. Spraying
with medium size aerosols (count median diameter = 60–
90 mm) is recommended for disinfection in animal houses.
Spraying SAEW was also reported to be useful for
scrubbing air exhausted from a poultry house by reducing
ammonia and culturable bacteria[35,103].
Spraying SAEW or NEW can destroy the microorga-

nisms and slow their growth by direct contact with the
microorganisms. However, the effect will reduce and
vanish over time after spraying and the microbial
populations both on the surfaces and in the air will
increase again. Spraying SAEW can slow the increase of
the microbial population in the air after spraying[15]. The
remaining period for the effect of spraying SAEWor NEW
has not been elucidated in current studies. It can be
influenced by many factors such as ACC, spraying
volume, size of sprayed aerosols, initial airborne microbial
population, ventilation and management practices after
spraying. Additionally, the surface and air disinfection in
animal houses can have interactions. Microorganisms
attached to the surfaces in animal houses can go into
suspension in the air when they are disturbed by air-flow or
animal activity. Also, airborne microorganisms can be
attached to the surfaces from the air due to a series of
processes such as gravitational sedimentation, impaction
and electrostatic precipitation. Surface disinfection con-
tributes to reducing the suspended microorganisms in the
air after spraying. Also, air disinfection can lower the
microbial population on the surfaces after spraying.
In summary, a large number of studies have revealed

SAEW to be novel disinfection agents for both surface
disinfection and air disinfection in animal houses. They

represent alternative disinfection agents which are highly
effective, healthy and environmentally friendly for the
application in animal houses. AEW is not applied for
disinfection in animal houses, due to its strong acidity
which can cause severe corrosion and rapid Cl2 volatiliza-
tion. More available chlorine exists as HOCl in SAEW
compared to NEW, which means that SAEW will be more
effective than NEW at the same ACC. This may explain
why SAEW is more often employed for disinfection in
animal houses than NEW. It is suggested that using SAEW
with high ACC is best for reducing microbial populations
in animal houses, due to their high level of organic matter.
The system generating SAEW by electrolyzing dilute NaCl
and HCl solutions in a non-membrane electrolytic cell is
usually employed to produce SAEW for application in
animal houses. This system not only produces SAEW with
high ACC but also avoids the use of membranes in the
electrolysis cell. Spraying SAEW is extensively applied for
disinfection in animal houses, including surface and air
disinfection. Spraying SAEW showed high antimicrobial
activity on surfaces in animal houses and increasing the
ACC of SAEW and the spraying volume can improve the
antimicrobial effectiveness on these surfaces. Airborne
microbial populations in animal houses can also be greatly
reduced by spraying SAEW. The antimicrobial activity is
influenced by ACC, spraying volume, size of sprayed
aerosols, and ventilation of the building. Spraying SAEW
can lower the microbial populations in animal houses,
preventing animals and workers being exposed to high
levels of pathogens.

6 Conclusions

EW exhibits strong antimicrobial activity against a broad
spectrum of microorganisms. The definitions of SAEWand
NEW are clarified in this review. SAEW and NEW can be
produced by different systems, affecting their active
components and thereby their antimicrobial activity.
HOCl and OCl– are responsible for the antimicrobial
activity of SAEW and NEW. Spraying SAEW is
considered as an alternative approach for reducing the
microbial populations in animal houses. Increasing the
ACC of SAEWand the spraying volume could improve its
antimicrobial effectiveness on the surfaces in animal
houses. The airborne microbial population in animal
houses can be greatly reduced by spraying SAEW. The
airborne microbe reduction by spraying SAEW is
influenced by ACC, spray volume, aerosols size and
ventilation.
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