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Abstract As an important oil crop and a potential
bioenergy crop, Brassica napus L. is becoming a model
plant for basic research on seed lipid biosynthesis as well
as seed oil content, which has always been the key
breeding objective. In this review, we present current
progress in understanding of the regulation of oil content
in B. napus, including genetics, biosynthesis pathway,
transcriptional regulation, maternal effects and QTL
analysis. Furthermore, the history of breeding for high
oil content in B. napus is summarized and the progress in
breeding ultra-high oil content lines is described. Finally,
prospects for breeding high oil content B. napus cultivars
are outlined.
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1 Introduction

Oil is one of the three major nutrients required for human
survival. As the third major source of edible oil after
soybean and palm, Brassica napus L. (rapeseed) accounts
for about 15% of the world total production[1]. High-
quality B. napus oil, with low saturated fatty acid content,
is considered as one of the healthiest edible vegetable oils.
B. napus is mainly produced in Asia, North America, and
Europe, where its production accounts for 31%, 24% and
32%, respectively, of world total production in 2015,
according to data from the USDA Foreign Agricultural
Service (World Agricultural Production: http://www.fas.
usda.gov/data/world-agricultural-production). The two
main rapeseed producing countries in Asia are China and
India. In China, the rapeseed cultivation area of about 7

million hectares yearly accounts for about 21% of the total
world production. Rapeseed oil is also the largest domestic
source of edible vegetable oil in China (http://www.fas.
usda.gov/data/world-agricultural-production).
Oil production is the primary target trait of rapeseed

breeding. Rapeseed oil production efficiency is determined
by seed oil content and seed yield[2]. These two factors are
therefore important breeding objectives for improving oil
production. Traditional breeding for over 60 years in
China has increased the seed yield 2–3-fold compared to
initially introduced rapeseed varieties that yielded about
750 kg$hm–2[3]. Recent studies suggest that increased oil
content may be a more efficient approach to increase oil
production per unit area; an increase in oil content by 1%
was estimated to be equivalent to increasing the seed yield
by 2%–3%[4]. Therefore, efforts to understand the
regulatory basis of oil content and to breed high oil
content varieties are objectives of current rapeseed
research. With the development of biotechnology, the
wide application of second-generation technology and
SNP markers has greatly promoted the study of rapeseed
oil content in the world. Especially in China, rapeseed oil
content research and breeding have made good progresses
in recent years, and the details are described in the
following sections.

2 Regulation of B. napus oil content

2.1 Genetic analysis on seed oil content in B. napus

Plant seeds are complex structures that consist of three
major components: the embryo, the endosperm, and the
seed coat. In mature rapeseed seeds, the endosperm
degenerates and the seed coat enwraps the embryo tightly.
Based on the results from Hu et al.[5], most of the oil body
organelle accumulates in the embryo and a small
proportion of oil body was also observed in the aleuronic
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cells of the seed coat. Seed oil content is a complex
quantitative trait controlled by multiple genes that undergo
complex interactions with the environment. Genetic
control involves a combination of seed embryo genetic
effects, and maternal nuclear and cytoplasmic genetic
effects. The genetic effects on seed oil content vary
because of different research methods and materials. Gan
and Lin[6] showed that seed oil content in B. napus was
influenced by maternal genotype, whereas Wang[7] found
that the oil content in hybrids was affected by embryo
genotype as well as the maternal genotype. Another study
by Wu et al.[8] indicated that oil content was determined by
embryo genotype, cytoplasmic and maternal genotype
effects, and interaction of genotype and environment. The
above results suggest that studies in different genetic
backgrounds might be able to detect one effect but
detection of others might be limited. To avoid the influence
of genetic background, Wang et al.[9] chose 10 representa-
tive lines with different oil contents from 3000 B. napus
accessions to perform a genetic analysis. They found that
the maternal genotype contribution to average oil content
was as high as 86%, and that the xenia effect accounted for
only 14%. Moreover, by comparison of oil contents
between reciprocal F1 and F2 populations, cytoplasmic
effects were also found to have an important influence on
oil content[9].

2.2 The effects of the embryo oil synthesis process on seed
oil content

Oil synthesis in plant seeds is a complex physiological and
biochemical process involving two steps: fatty acid
synthesis (FAS), and triglyceride (TAG) accumulation.
The biochemical pathways of the two processes have been
well studied[10–12]. The key genes encoding lipid synthesis
and regulation have been successfully cloned and
characterized in Arabidopsis including glycolysis-related
genes and fatty acid synthesis-related gene ACCase
(Acetyl-CoA carboxylase)[13], G3PDH (sn-Glycerol-3-
phosphate dehydrogenase)[14], TAG biosynthesis genes
DGAT1 (diacylglycerol acyltransferase 1)[15–17] and
DGAT2 (diacylglycerol acyltransferase 1)[18], GPAT
(glycerol-3-phosphate acyltransferase)[19], and LPAAT
(lysophosphatidic acid acyltransferase)[20,21]. Genetic
transformation studies confirmed that these genes can
increase seed oil content to various degrees[22]. For
example, seed obtained from transgenic B. napus expres-
sing the cytosolic ACCase in the plastid resulted in a
relative increase in oil content of 5%[13]; overexpression of
a mutated yeast sn-2 acyltransferase gene (SLC1-1) in
B. napus and Arabidopsis induced the mature seed from
the various transgenic lines to produce relative increases in
oil content ranging from 8% to 48%[20]; Tropaeolum majus
DGAT1 (TmDGAT1) has also been overexpressed in high-
erucic acid B. napus resulting in relative seed oil content
increases of 11%–30%[23].

The flow of carbon into storage lipid is also influenced
by other metabolic pathways which draw upon cellular
carbon. In plants, glycolysis takes place in the cytosol and
plastid, with both compartments linked by transporters in
the plastidial envelope[24]. Pyruvate kinase catalyzes the
irreversible production of pyruvate and ATP, which
are utilized in numerous biochemical pathways. Andre
et al.[25] disrupted the gene encoding the β1 subunit of
plastidial heteromeric pyruvate kinase complex in Arabi-
dopsis which resulted in mature seed displaying a 60%
reduction in seed oil content. Mitochondrial pyruvate
dehydrogenase kinase (PDHK) downregulates the mito-
chondrial PDH complex by phosphorylation. Seed-specific
antisense repression of the gene encoding mitochondrial
PDHK during seed maturation has been shown to result in
increased seed oil content and seed weight in Arabidop-
sis[26,27]. Wakao et al.[28] have suggested that cytosolic
Glu6PDH plays a role in provision of reducing power (in
the form of NADPH) for fatty acid (FA) biosynthesis in
maturing seeds where photosynthesis may be restricted.
Certain transcription factors regulate lipid synthesis

pathway genes and can greatly influence metabolic
processes involved in seed oil accumulation. In Arabi-
dopsis and rapeseed, there are five such transcription
factors that control downstream target genes, namely
WRI1, LEC1, LEC2, ABI3, and FUS3[29].WRI1 encodes an
AP2/EREB domain transcription factor; the wri1 mutant
cannot convert sucrose into precursors for fatty acids,
leading to increased insoluble sugar contents and reduced
seed oil content[30,31]. Overexpression of rapeseedWRI1 in
Arabidopsis increased not only seed oil content but also
seed weight[32]. LEC1, encoding CCAAT-box binding
factor HAP3 subunit homolog plays an important role in
the formation and maturation of the seed embryo[33,34].
Overexpression of LEC1 in rapeseed upregulates many key
genes that are involved in glycolysis, lipid synthesis, and
oil accumulation, leading to a significant increase in fatty
acid levels[35]. LEC2, ABI3, and FUS3 belong to plant-
specific transcription factor families. The transcription
level of the LEC2 gene was positively correlated with oil
accumulation[36–38]. FUS3 and ABI3 have important roles
in late-stage seed development[39]. TRANSPARENT
TESTA2 (TT2), regulating biosynthesis of proanthocya-
nidins (PAs) in the seed coat of Arabidopsis causes
inhibition of fatty acid (FA) biosynthesis in the seed
embryo. TT2 is expressed in embryos at an early
developmental stage; it directly binds to the regulatory
region of FUSCA3 (FUS3) and mediates expression of
numerous genes in the FA biosynthesis pathway[40]. These
genes and their respective functions are summarized in
Table 1.

2.3 Maternal effects on seed oil accumulation

Maternal effect refers to the effect that the cultivar
genotype and the environmental response of the maternal
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parent have on traits of the offspring[46]. The seeds of
rapeseed develop and mature within maternal tissue
surrounded by the maternal silique wall (Fig. 1). The
development of the embryo depends on the direct supply of
nutrients from the plant, hence the physiological metabo-
lism and gene expression in the silique wall or seed coat
(maternal tissue) can influence the accumulation of seed
nutrients (Fig. 1). Wang et al.[9] showed that the maternal
plant genotype controls the oil content of B. napus F1
seeds. After flowering, the green silique wall becomes a
major organ for photosynthesis, and provides more than
70% of the energy for seed development[47,48].
Thanks to high-throughput sequencing and transcrip-

tome gene expression analysis, studies with rapeseed lines
zy036 and 51070 have confirmed that the silique wall
photosynthesis regulates accumulation of seed oil[49]. Seed
coat-specific gene expression can regulate the supply of
nutrients and influence the maturation process, affecting
the final development of the endosperm and embryo[50–52].
For example, AP2 and KLU regulate glucose metabolism,
and affect the seed oil content in the Arabidopsis seed
coat[41,42,53]. Tissue culture studies using rapeseed siliques,
ovules and embryos from rapeseed lines with different oil
content have confirmed that seed coat affects oil
accumulation by regulating sucrose concentration[44,54].
TRANSPARENT TESTA 8 (TT8) in the seed coat was
also reported to act maternally to affect seed FA
biosynthesis and inhibited seed FA accumulation by
downregulating a group of genes including LEC1, LEC2,
FUS3, and CDS2, which are transcriptional factors

important for seed development or FA biosynthesis[43].
Wang et al.[9] showed that the cytoplasm significantly
regulates rapeseed oil content in lines 51218 and 56366.
Cytoplasmic genome sequencing of these two lines led to
the development of useful molecular markers[55]. Cyto-
plasmic effect and marker linkage analysis between the
two materials and resource populations helped to identify
the key gene (ORF188) that affect oil content[45]. The
locations of the molecular regulation pathways are
indicated in Fig. 1.

2.4 QTL mapping on seed oil content

Seed oil content is a complex quantitative trait controlled
by multiple genes; therefore, high oil content B. napus
lines from different sources show significant genetic
variations. In the past 20 years, researchers have used
DH populations, recombinant inbred lines and F2 popula-
tions from parents with different oil contents to locate
genes/QTLs affecting oil content. A large number of QTLs
have been identified across almost all chromosomes, with
each study identifying 3–27 loci[56–66]. For example, Qiu
et al.[58] localized QTLs in a DH population to linkage
groups N1, N3, N4, N8, N12, N13, and N17. Delourme
et al.[59] located 14 and 10 QTL regions in two DH
populations. The genetic basis of rapeseed oil content has
also been studied using correlation analysis. Five years
ago, most of the maps were constructed on the basis of the
SSR markers. With the development of the GWAS, the
QTLs maps depend on it more and more. For example, Zou

Table 1 Identification and function of genes affecting seed oil content

Organ Function Gene Specie Reference No.

Embryo Fatty acid synthesis Acetyl-CoA carboxylase (ACCase) Arabidopsis [13]

TAG synthesis Acyl-CoA:sn-glycerol-3-phosphate acyltransferase (GPAT) Arabidopsis [19]

sn-Glycerol-3-phosphate dehydrogenase (G3PDH) Rapeseed [14]

Acyl-CoA:lysophosphatidic acid acyltransferase (LPAAT) Arabidopsis, rapeseed [20,21]

Type 1 acyl-CoA: diacylglycerol acyltransferase (DGAT1) Arabidopsis, rapeseed, maize [15,16]

Type 2 acyl-CoA: diacylglycerol acyltransferase (DGAT2) Soybean [18]

Glycolysis related Mitochondrial pyruvate dehydrogenase kinase (PDHK) Arabidopsis, rapeseed [26,27]

Cytosolic D-glucose-6-phosphate dehydrogenase (Glu6PDH) Arabidopsis [28]

Plastidial heteromeric pyuvate kinase complex Arabidopsis [25]

Transcription regulation Leafy contyledon 1 (LEC1) Arabidopsis, rapeseed, maize [34,35,37]

Leafy contyledon 2 (LEC2) Arabidopsis [36]

Transparent tetsa 2(TT2) Arabidopsis [40]

Wrinkled 1(WRI1) Arabidopsis, rapeseed, maize [30,32,37]

Seed coat Seed size regulating genes in
embryo

Apetala 2 (AP2) Arabidopsis [41]

CYP78A5 (KLU) Arabidopsis [42]

Transparent testa 8 (TT8) Arabidopsis [43]

Mother plant Photosynthesis Growth-regulating factor 2 (GRF2) Rapeseed [44]

All Cytoplast effect ORF188, a mitochondrial gene Rapeseed [45]
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et al.[67] used 116 molecular markers linked to oil content
QTL to conduct a GWAS analysis on 172 rapeseed lines
from around the world. Their study indicated that about
50% of the markers were correlated with oil content. Sun
et al.[68] analyzed 14 markers for candidate oil synthesis
genes with seven major QTL peak areas or within the
confidence intervals in 81 rapeseed core germplasm
accessions. They found that six markers in four QTL
regions were associated with oil content, and that
combinations of four of these markers could increase oil
content by 5%. Although previous studies found many loci
associated with oil content, the phenotypic variability and
additive effect of the detected QTLs for oil content were
relatively small. As a consequence, there has been little
application of markers for oilseed content in rapeseed
breeding. Recently, using a Brassica 60K SNP array, three
segregating populations with high oil (zy036, 6F313, and
61616) and one low oil content (51070) strain were used to
identify oil content QTLs where differences in oil content
reached 15%. They obtained six QTLs from the three
different high oil strains that contributed more than 20% of
the variation which providing a good resource for marker-

assisted breeding of high oil rapeseed[69,70]. These results
are summarized in Table 2.

2.5 Relationships between oil content and other traits

As seed oil content and seed yield traits are closely related
to each other, clarification of relationships between various
traits and oil content is essential for breeding for high oil
content. Investigation of the correlation of seed oil content
with several major yield traits in 16 varieties suggested
positive contributions in the following order: pod num-
ber> lodging rate> 1000 grain weight> yield>main
inflorescence fruitless rate> silique number[72]. Another
study showed that oil content was significantly positively
correlated (r = 0.421) with seed number per silique while it
only had a small positive correlation (r = 0.172) with single
seed weight[61]. The correlation between oil content and
inflorescence yield in segregating DH populations varied
with geographic location[73]. In this work a positive
correlation was found between oil content and main
inflorescence yield in one location whereas oil content in
the other three locations was not significantly correlated

Fig. 1 Regulation model of seed oil content in Brassica napus. Boldfaces indicate major organs or factors controlling the seed oil
content and their relative regulating pathways are listed in the parenthesis.
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with inflorescence yield. The study concluded that the oil
content and yield did not have a strong negative
correlation, thus setting a theoretical foundation for
synchronized oil content and yield breeding.
Physiological and biochemical studies showed that

Sclerotinia resistance and lodging resistance are important
factors affecting oil content in rapeseed[74]. With the aid of
high-throughput sequencing and transcriptome gene
expression analysis, two functional genes (HSP17.8 and
DDT) were identified in B. napus that could stabilize oil
content under stress by improving the heat and drought
resistance of plants (unpublished data). The above results
demonstrated that plant resistance and oil content are
positively correlated; thus, providing a theoretical and
technical basis for synchronized improvement in B. napus
varieties.

2.6 Relationships between environment and oil content

As a quantitative trait, rapeseed oil content is controlled by
multiple genes and influenced by environmental factors.
Because of the wide and varied planting area in China,
rapeseed oil contents in diverse ecological areas show great
differences. Some studies suggest that most of the QTL
loci of the same population detected in different environ-
ments were environmentally specific, indicating that the
adaption to different environmental factors has an
important role in fostering high oil content varieties
bearing strong alleles[71]. Temperature and light are the
two greatest environmental factors influencing oil produc-
tion of rapeseed[75–77]. High temperature during rapeseed
maturation is not conducive to the accumulation and
transformation of nutrient material into seed[75]. Especially
in China, in the Yangtze River Basin, which contains the
main Chinese Rapeseed producing areas, temperatures
often rise too fast. High temperature forces seeds to mature

earlier. As a result, seed weight and oil content decrease
sharply. Some studies also show adequate lighting and
long-time illumination can increase the efficiency of lipid
accumulation[76,77]. Currently, research on the mechanism
whereby environmental factors affect seed oil content is
insufficient. Yu et al.[78] analyzed the global transcription
profiles of 20 d-old siliques of B. napus after heat stress
using a Brassica 95K EST microarray and found that many
HSF/HSP transcripts and other heat-related marker genes
were upregulated. Other upregulated genes including some
transcription factors and potential developmental regula-
tors were preferentially expressed in the heat-stressed
silique wall or seed.

3 Progress and prospects for genetic
improvement of oil content in B. napus

3.1 Creation of ultra-high oil B. napus resources

Breeding high oil rapeseed varieties ten years ago largely
depended on conventional plant breeding methods such as
continuous individual plant selection in varietal popula-
tions, hybrids between varieties, mutagenesis, yellow seed,
and heterosis. For example, in 2007, Dr. Fu Tingdong at
Huazhong Agricultural University bred high oil (up to
54.72%) and double low rapeseed line by hybridization
and a series of selections[79]. Using similar technology, Fu
et al.[80] at the Chinese Jiangshu Academy of Agricultural
Sciences used a high oil content population as the selection
group to positively screen for seed oil content and obtained
a high oil line HOC3 with an oil content of 54.52%.
In recent years, conventional breeding methods to

improve oil content in rapeseed have encountered increas-
ing bottlenecks. More biotechnology approaches, such
as microspore culture and molecular marker-assisted

Table 2 QTLs affecting seed oil content in B. napus

Oil content of parents/% Localization method QTL number Position Contribution/% Reference No.

43.60, 42.00 DHP, ML 7 N1,N3,N4,N8,N12,N13,N17 2.40–15.70 [58]

48.00, 46.00 DHP, ML 15 N1, N2, N3, N5, N6, N10, N12, N13, N15, N16, N17 1.20–13.40 [59]

47.50, 41.70 DHP, ML 8 N1, N4, N6, N12, N16, N17, N19 1.77–27.57 [59]

43.28, 37.03 DHP, ML 5 N1, N8, N10, N13 5.21–10.17 [64]

39.70, 34.80 DHP, ML 7 N4, N7, N11, N16, N17 3.73–10.46 [63]

39.70, 34.80 DHP, ML 9 N1, N3, N4, N5, N7, N13, N14 5.19–13.57 [65]

N/A
DHP, ML 19

N1,N2,N3,N4,N5,N6,N7,N8,N10,N12,N13,N14,N16,
N18

4.20–30.20 [66]

49.53, 39.42 DHP, ML 12 A2, A3, A5, A6, C2, C5, C8, C9 9.15–24.56 [69]

30.00–52.00
NP, GWAS 12 A1, A3, A9, A10, C2, C3 3.00–15.00 [67]

NP, GWAS 26 A1, A3, A4, A9, A10, C2, C3 5.00–15.00 [67]

32.66–46.73 NP, GWAS 4 A1, A5, A7, A8 4.42–13.13 [68]

34.20–51.40 NP, GWAS 1 A8 6.22 [71]

Note: DHP, DH segregative population; ML, map-based localization; NP, natural population; GWAS, genome-wide association studies.
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selection breeding are urgently needed to support high oil
content breeding. Zhu et al.[81] reported that a combination
of gene pyramiding and microspore culture helped to
increase oil content to 52.38% in the restorer material
strain T057-7. Li et al.[82], at the Shanxi Provincial Hybrid
Rapeseed Research Center, increased the oil content of
B. napus germplasm materials from about 40%–61.7%
using single crosses, backcrosses, ecological breeding,
yellow seed breeding and DH line breeding methods.
Recently, by combing the microspore culture and marker-
assisted selection, Wang’s group at the Oil Crops Research
Institute of the Chinese Academy of Agricultural Science
used four special aforementioned resources (zy036, 6F313,
61616, and 61218) to create five new strains with oil
contents of 60%, among which YN171 has an oil content
of up to 64.8%[5], a new world record.
Hu et al.[5] conducted anatomical analysis on the seeds

with different oil contents, and proposed a forecasting
model of rapeseed oil content. Oil content = cotyledon
ratio� oil body organelles ratio in cotyledon cell+ radicle
ratio � oil body organelles ratio in radicle cell+ 1/3 �
seed coat ratio� oil body organelles ratio in aleurone cells.
According to this formula, if the maximum values of the
various components of rapeseed currently observed were
considered the predicted oil content could be increased to
75%, indicating further potential for improvement in
rapeseed oil content.

3.2 Breeding of high oil content B. napus cultivars

If high oil varieties are to be practical, they must also have
other excellent agronomic traits. Until now, high oil
breeding has experienced two phases: The first phase was
to identify high oil content cultivars with low erucic acid
and low glucosinolate contents, high levels of which are
harmful to human health), and the second phase was high
oil content taking into account other characteristics such as
high yield and other desirable agronomic traits. For phaseI,
Canada and Europe achieved the goal much earlier. Well
known varieties includs the Canadian double low varieties
Zephyr and Midas both with oil contents exceeding
50%[83], and French double low variety Major with an
oil content over 50%[76]. Since the early 1980s, high oil
rapeseed breeding work in China has included considera-
tion of erucic acid and glucosinolate contents. After 20
years, high oil rapeseed varieties in China have basically
achieved the double low character, and average oil content
in varieties has been improved by 2%–3% over nearly 10
years, from 40.5% to 43%[23,84].
Current breeding objectives for high oil rapeseed

varieties are currently in the second phase, which takes
into account high oil content and high yield combined with
desirable agronomic traits including Sclerotinia resistance,
pod shattering resistance, and lodging resistance. Good
progress has been made; 24 high oil containing varieties

were identified during the national validation of winter
rapeseed varieties in China during 2001–2006. Among
them, Zhongshuang 9 was obtained from a multiple cross,
microspore culture, and different generations screening for
target traits. The integrated traits include yield, resistance,
and quality to achieve rapid pyramiding of multiple target
traits with good qualities such as high oil content, high
yield, high disease resistance, high lodging resistance, high
protein content, low erucic acid, and low sulfur glucoside
content. During 2007–2010, China produced 44 winter
rapeseed varieties with high oil content. Among them,
Zhongshuang 11 was the first released OP variety with oil
content> 49%; it combines outstanding traits such as high
oil content, strong shattering resistance, lodging resistance
and resistant to Sclerotinia. Zhongshuang 11 overcame the
contradictions between phenotypes of high oil content and
yields, resistance traits through combining approaches
such as microspore culture and marker assistant selection.

4 Conclusions and future perspectives

Although rapeseed oil content breeding has made good
progress worldwide in the past ten years, there is still
potential for further improvement. Synchronous improve-
ment of multiple traits is the current trend for high oil
breeding. The completion of rapeseed genome sequencing
projects will further help in identifying and isolating the
corresponding genes from oil trait QTLs. Moreover, the
availability of NGS and SNP arrays will accelerate
research on molecular regulatory mechanisms that may
help to increase rapeseed oil content. Genetic engineering,
molecular marker technology combined with a conven-
tional directional selection strategy will be the trend in
breeding high oil content rapeseed.
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