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Abstract The Cynoglossus semilaevis (half-smooth ton-
gue sole) is a marine flatfish of great commercial value for
fisheries and aquaculture in China. It has a female
heterogametic sex determination system (ZW/ZZ) and
environmental factors can induce sex-reversal of females
to phenotypic males, suggesting that it is a promising
model for the study of sex determination mechanisms.
Additionally, females grow much faster than males and it is
feasible to improve the aquaculture production through sex
control techniques. This paper reviews the progress in
research on sex determination mechanisms research in our
laboratory. We have completed whole-genome sequencing
and revealed the genome organization and sex chromo-
some evolution of C. semilaevis. A putative male
determining gene dmrtl was identified and DNA methyla-
tion was verified as having a crucial role in the sex reversal
process. Genetic maps and sex-specific biomarkers have
been used in a marker-assisted selection breeding program
and for differentiation of the fish sex. Development and
improvement of sex control technologies, including
artificial gynogenesis and production of breeding fry
with high proportion of females, is also reviewed. These
research advances have provided insight into the regulation
of sex determination and enabled efficient sex management
in artificial culturing of C. semilaevis.
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1 Introduction

Aquaculture of various finfish species is rapidly growing
worldwide, which provides sustainable and important food
sources for human consumption. Cynoglossus semilaevis
(half-smooth tongue sole) is a large marine flatfish species
that is widely distributed in Chinese coastal waters (Fig. 1).
It is popular and well-known for its high nutritional
and culinary value. As the first Soleidae fish species to
be artificially cultivated, the sustainable farming of
C. semilaevis has been successful in both industrial-scale
hatcheries and pond culture practices. China is the largest
producer and consumer of C. semilaevis with an annual
farmed production valued at about 1.5 billion CNY!',

C. semilaevis exhibits significant sexual dimorphism.
Females grow faster and the final body length and weight

Female

Fig. 1 Two year old female and male Cynoglossus semilaevis
(half-smooth tongue sole)
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are two to four times that of males™". Consequently,

females have higher productivity and economic value in
aquaculture than males. Increasing the proportion of
female fish to a high level has important commercial
implications and is one of the most significant challenges
for C. semilaevis culturing practice. To achieve this
purpose, both fundamental biological understanding of
sex determination mechanisms and development of
practical sex control techniques are of great importance.

In recent decades, numerous studies have brought a
boom in the understanding of the molecular and biological
mechanisms in this species. C. semilaevis has complicated
and special sex determining mechanisms, which are
governed by both genetic and environmental factors.
Karyotype analysis has revealed that C. semilaevis
contains a total of 42 chromosomes (2n = 42t, NF=
42) including 20 euchromosome pairs and a pair of sex
chromosomes (Z and W). The genetic sex determining
mechanism of C. semilaevis was verified to be female
heterogametic with ZW chromosomes whereas males have
77 chromosomes™**. In addition to the genetic inheritance
of sex chromosomes, environmental factors, such as
temperature, can also make a great contribution to the
sexual fate of C. semilaevis. It has been observed that
under normal culturing condition (22°C), 14% of genetic
females (with ZW sexual chromosomes) are sex-reversed
to phenotypic males (i.e., sex reversed pseudo-males)®..
Furthermore, the sex reversal rate increased to 73%, when
the rearing temperature was set to 28°C during a sensitive
developmental period early in lifel®!. Also, the ability to
undergo sex reversal is heritable. The pseudo-males are
fertile and can mate with normal females to produce viable
offspring, which exhibit a sex reversal rate as high as 94%,
even under normal cultivating temperature (22°C)P. All
these features indicate that the C. semilaevis is an excellent
model to investigate sex-determining mechanisms in fish.
The interpretation of molecular mechanism underlying the
sexual differentiation and reversal will also facilitate the
genetic engineering of sex control and genome selection
breeding with the aim of increasing production and quality
in aquaculture.

Through years of research, we have made significant
progress in studies of the sex determination and the
development of sex control techniques. As the first
genome-sequenced flatfish, the availability of the
C. semilaevis genome resource has provided new
knowledge about the genetics of sex determination and
other physiological processes in C. semilaevis. Combined
with transcriptomic and epigenetic analysis, we have
discovered the putative male-determining gene dmrt/ and
methylation regulation in the sex determination. A variety
of genetic linkage maps have been constructed, providing a
powerful tool for research on genome evolution and brood
stock enhancement projects using selective breeding.
Highly sensitive sex-specific biomarkers have been
identified and successfully applied to differentiation of

sex in C. semilaevis and have promoted the development
of new technologies for sex control, such as artificial
gynogenesis and breeding fry production with a high
proportion of females. Such sex control techniques will
be effective in increasing the proportion of female
C. semilaevis, thus improving aquaculture productivity
and profitability. Further refinement of these techniques
and development of new techniques is needed and could
enable biological and genetic engineering of the sex
control in large-scale aquaculture.

2 Genetic mechanism of sex determination
2.1 Genome sequencing and sex-determining gene

In teleost, there are three types of sex determination
mechanisms. One is genetic sex determination (GSD),
meaning that sex is determined through sex chromosomes
and sex determining genes. The second type is environ-
mental sex determination (ESD), under which environ-
mental factors, such as temperature, pH and light intensity
can influence sex differentiation. The third type is genetic
determination plus environmental effects (GSD + EE).
There is a plastic interaction between genetic and
environmental factors, making a combined action on the
sexual fate of fish. It is known that C. semilaevis employs a
female heterogametic sex determination system (ZW/ZZ).
Surrounding environmental conditions, such as high
temperature, can induce sex-reversal of female fish to
phenotypic males. As a fish species with clear sex-specific
difference in morphology, the mechanisms underlying the
sex determination of C. semilaevis are an important and
interesting scientific question. After years of effort,
significant advances have been made in the study of sex
determination mechanism of C. semilaevis.

An important foundation of genome analysis is the
construction of bacterial artificial chromosome (BAC)
libraries. BAC libraries provide a platform for the
construction of physical maps and complete genome
sequencing, which are powerful tools for large-scale
gene discovery and elucidation of gene function and
regulation. BAC libraries are also applied in map-based
cloning of quantitative trait loci, molecular cytogenetics
and genomic variation identification. To obtain the
genomic sequence of C. semilaevis, two BAC libraries
with three females and a high resolution BAC-based
physical map of C. semilaevis were constructed'. A total
of 55 296 BAC clones were obtained, corresponding to
13.4 haploid genome equivalents. In the BAC library, it is
estimated and validated that there is a 99% probability that
each clone has a single-copy sequence!®), indicating the
library was established with high reliability and accuracy.
Based on the BAC library, the assembly consisted of 1 485
contigs with an N50 length of 664 kb and an estimated
physical length of 797 Mb, equivalent to about 1.27
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coverage of the C. semilaevis genome!”). The BAC-based
physical map has been used for the integration of physical
and genetic maps, fine-mapping of important genes and/or
quantitative trait loci (QTL), and comparative and
evolutionary genomics studies.

In recent years, development of next-generation sequen-
cing technology has provided high-throughput and low-
cost sequencing platforms, permitting research and inter-
pretation of the sequenced organism from a systematic
point of view. The whole-genome sequencing of
C. semilaevis was completed in 2014 using the Illumina
sequencing platform. To reveal the genetic basis of its sex
determination, the genomic DNA of a female and a male
C. semilaevis was sequenced. High quality shotgun reads
were obtained with a sequencing depth of 121-fold for
each fish. The genome size of C. semilaevis was estimated
to be 477 Mb, with the scaffold N50 of 867 kb and an
average GC content of 40.8% (Fig. 2)P°!. The previously
established BAC libraries were used to overcome some
difficulties in assembly of the short reads, such as repetitive
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sequences and gaps. A variety of sequence information and
biomarkers in several ready-to-use physical map and
genetic linkage maps were used to facilitate the genome
assembly, including a BAC-based physical map!’!, micro-
satellite genetic maps™ " and a high-resolution SNP
genetic map. The microsatellite and SNP genetic markers
were assigned to 22 linkage groups corresponding to the 20
autosomes and two sex chromosomes (Z and W). In the
final assembly, a high proportion of the sequences (93.3%)
of 445 Mb was consistently assigned and localized on 22
linkage groups, containing 19 800 genes (92.0% out of all
predicted genes)™!. Based on the genome assembly, the
final gene set of C. semilaevis contained 21 516 genes,
99% of which were confirmed by homologous genes in
other organisms or in the transcriptome sequencing. More
than 94% of the predicted genes were functionally
annotated in the Swiss-Prot database and GO database!™.
The phylogenetic relationship and divergence time were
analyzed by comparing the genome of C. semilaevis with
other teleost fishes using human and chicken genomes as
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Fig. 2 Teleost genome evolution. Whole-genome duplication in Cynoglossus semilaevis and orthology in Oryzias latipes, Tetraodon
nigroviridis, Daniorerio, and human genomes. The arcs of concentric circles represent each C. semilaevis chromosome (Csel—-Cse20 and
CseZ). A-D, tongue sole chromosomes indicated with different colors according to the location of the orthologs in the human (Hsa),
D. rerio (Dre), T. nigroviridis (Tni) and O. latipes (Ola) genomes. A 100 kb region around a gene is indicated in the same color;
E, C. semilaevis chromosomes indicated by the corresponding ancestral chromosomes (Ancl-Anc13); F, each line joins duplicated genes

at their respective positions (adapted from Chen et al.l*).
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outgroups. It is estimated that flatfish diverged from other
bony fish about 197 million years before the present.

The genomic sequences of both W and Z chromosomes
were identified through comparison of the female and male
assemblies, with scaffold length of 23.3 and 16.4 Mb,
respectively. Notably, the Z chromosome sequence in
C. semilaevis is the first full sequence of the Z chromosome
outside of birds'™). Phylogenetic and comparative analysis
allowed identification of many important evolutionary
events of the sex chromosomes and provided insights into
its sex determining mechanisms®!. The C. semilaevis W-
linked and Z-linked scaffolds were analyzed and compared
with sex chromosomes of mammals and birds. This
showed that the sex chromosomes of C. semilaevis have
evolved from a pair of ancestral vertebrate autosomes and
massive gene loss occurred in the early stage of sex
chromosome formation. The age of sex chromosomes in
C. semilaevis was determined to be about 30 million years,
demonstrating that C. semilaevis has young sex chromo-
somes compared to those of mammals and birds which
date back hundreds of millions of years. Therefore, there
are still many intact genes in the non-recombining region
of the C. semilaevis W chromosome!. Moreover, the sex
chromosomes of C. semilaevis are highly conserved with
those of chicken, which has a similar ZW sex chromoso-
mal system'!

In C. semilaevis, sex determination operates through a
Z-encoded mechanism that determines male development.
A putative functional male sex-determining gene dmrtl
(double sex and mab-3 related transcription factor) was
discovered on the Z chromosome. Dmrtl was specifically
expressed in male germ cells and pre-somatic cells of the
undifferentiated gonad at the sex-determination stage and
persisted at high levels during testis development!”
(Fig. 3a, Fig. 3b). In ZW females, the promoter region of
dmrtl was in a methylated state, whereas in sex-reversed
pseudo-males, demethylation patterns occur at the same
loci, which activated its transcription (Fig. 3¢). Through a
dosage compensation approach, the expression of dmrtl in
ZW pseudo-males is upregulated to a level that is normal
for ZZ males. Additionally, as a transcription factor, the
recombinant DMRTT1 protein of C. semilaevis was able to
regulate the expression of several sex related genes. It
inhibited the expression of cytochrome P450, family 19,
subfamily A, polypeptide 1 (cypl9a) and winged helix
fork-head transcription factor gene 2 (fox/2), but increased
the expression level of sox9a, implying its regulatory role
in sex differentiation!'”). All these features raise the
possibility that dmrtl is the critical gene that responds to
environmental change and triggers the sex reversal cascade
in C. semilaevis'

2.2 Epigenetic regulation and dosage compensation

In addition to GSD, ESD interacts strongly with GSD
mechanisms and influences the sex fate of C. semilaevis.
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Fig. 3 Characterization of dmrtl in half-smooth tongue sole.
(a) Dmrtl BAC FISH analysis of tongue sole chromosomes
showing a double signal in males and a single signal in females;
(b) RT-PCR analysis of dmrtl during developmental stages in
female (black bar) and male (red bar) tongue sole. The data are
shown as the meants.e.m. (n = 3); (c) methylation status across
the differentially methylated region (DMR) of dmrtI in the gonads
of an adult WZ female, a ZZ male and a WZ female compared to
male sex-reversed fish. The schematic diagram at the top shows the
genomic structure of dmrtl in tongue sole. Blue boxes, exons;
White boxes, 3" and 5 UTR regions; Black arrow, the direction of
the dmrtl gene from the transcriptional start site; Green line, the
methylation level of each cytosine, identified on both DNA strand
throughout the dmrtl gene in female and male fish; Gray shadow,
the DMR. Data are adapted from Chen et al.[*!.

However, the molecular biology of ESD remains poorly
understood. To understand the regulation of ESD, we
investigated the role that epigenetics (such as DNA
methylation, which has been analyzed by bisulfite
sequencing) plays in controlling the sex reversal process.
Genome-wide profiling of methylome analysis was
performed in C. semilaevis, showing that DNA methyla-
tion is crucial in the transition from GSD to ESD in the sex
reversal process. Firstly, the methylation pattern of the
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pseudo-male fish is highly similar to that of the normal
males. The epigenetically regulating genes expressed
during the sexual reversal process are significantly
enriched in those involved in known sex determination
pathways. Secondly, this epigenetic modification can be
inherited by the ZW offspring of pseudo-males, so that
most of these genetically female offspring become
phenotypic males without high temperature induction. As
a result, the percentage of phenotypic males in the
offspring of pseudo-males can reach as high as 95.5%!"°1.

Moreover, for animals with sex-determining chromo-
somes, it is critical to overcome dosage imbalance of the
sex chromosomes after phenotypic sex reversal. Compared
to normal males (ZZ) of C. semilaevis, the pseudo-males
(ZW) have one more female-specific W chromosome and
one less Z chromosome. Specific dosage compensation
occurs in a unique Z chromosome region in pseudo-males,
with gene expression level equal to that in normal male
testis, enabling them to overcome insufficient gene
expression relative to normal ZZ males. Methylation
variable positions and genes involved in spermatogenesis
are enriched in this region. Simultaneously, there is a
divergence in gene expression on the W chromosome.
Some genes maintain active expression in pseudo-males,
which is proposed to function in the dosage compensation
of the genes on the Z chromosome. However, some female
specific genes, such as figla, were inhibited by methylation
regulation, possibly because their expression would
interfere with the normal male phenotypel'*).

2.3 Sex related genes

Sex determination is a complex polygenic trait in fish. In
C. semilaevis, a number of similar sex-related genes were
identified, suggesting a conservation of sex determination
pathways. In addition to the putative male sex determinant
gene dmrtl, there is an E3 ubiquitin ligase gene neuri3,
which is present on the Z chromosome but absent from the
W chromosome. It is highly expressed during spermato-
genesis and W-chromosome sperm that lack this gene do
not develop in sex-reversed WZ pseudo-males, indicating
that it is a potential male-beneficial gene in C. semilaevis.

Gene expression analysis has been widely employed to
study the sex-related genes in C. semilaevis, revealing their
temporal and spatial expression patterns. The transcription
factors gene sox9a exhibited a higher expression in gonads
of pseudo-males than that of normal females with a
significant regulation during the period of sex differentia-
tion, which was considered to have a close link with sex
reversal, sex differentiation and cell differentiation of
embryos and formation of spermatogenic cellst'*!. Cyto-
chrome P450-aromatase, the enzyme catalyzing conver-
sion of androgens to estrogens, seems to be a critical
enzyme for ovarian differentiation. Two P450 aromatases
were found in C. semilaevis. PA50aromA belongs to the
gonadal P450arom subfamily, transcripts of which were
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highly abundant in ovaries, but lower in testis and not
present in other tissues!'”. P450aromB belongs to the
brain P450arom subfamilies, which shares 45.1%
sequence similarity with P450aromA in C. semilaevis
and had a high expression level in the brain and gills but
lower in gonads and skin. However, the P450aromB
transcript was down-regulated in the brain of sex-reversed
males after treatment with methyltestosterone or at high
temperatures!'®. Anti-Miillerian hormone (amh) is a
glycoprotein belonging to the transforming growth factor
B superfamily, which has a major role in reproductive
development in vertebrates. In C. semilaevis, the expres-
sion level of the amh gene increased in the gonads of males
and pseudo-male offspring, but did not change in females,
indicating that the amh gene is required for sex reversal
and during reproductive development!'”). Three homo-
logous genes encoding growth arrest and DNA-damage-
inducible protein 45gamma (gadd45g) were identified in
C. semilaevis, among which, gadd45g1 may be necessary
for sex differentiation in the early stage of gonad
development, and both gadd45g1 and gadd45g2 function
in maintaining ovary development and the female
phenotype of C. semilaevis''®. The gadd45g3 gene is
necessary for testes maturation and is involved in sex
determination prior to gonadal differentiation!'”). The
Wilms’ tumor suppressor gene, wt, is another sex-related
gene. Its expression in testes was significantly higher than
that in ovaries and gonads of sex-reversed female fish.
Among them, the lowest expression was found in the
gonad of sex-reversed females!*’!. The transcript of fushi
tarazu factor-1 gene (fiz-f1) was distinctly expressed in the
embryo rather than in larvae, which suggested that the
fiz-fl gene may be involved in the organogenesis in
C. semilaevis”'!. The ubiquitin-conjugating enzyme
(ubc9) gene may also function in the sex reversal process
because its transcript level was significantly higher in the
temperature-treated females than the normal females and
males*”/,

3 Sex-specific markers

High quality genetic linkage maps provide a promising
platform for marker-assisted selection breeding programs
for commercially important traits and systematic genome
searches for QTLs, relating to disease resistance, growth
and sex-related traits. Tremendous advances have been
made in the genetic map system and marker detection
techniques. In recent years, considerable effort has been
applied to genetic studies and a variety of genetic linkage
maps of C. semilaevis have been built, which has
significantly improved the pace and precision of fish
genetic analysis.

For C. semilaevis, distinguishing female and male
individuals and increasing the female ratio can improve
the profitability of aquaculture. After years of research, a
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large number of genetic biomarkers, especially sex-specific
molecular markers, have been identified and successfully
applied to the determination of sex genotype. Furthermore,
easy and powerful sex discrimination technology has been
developed using viable markers, allowing quick and
precise sex identification in C. semilaevis. As important
genomic resources, the molecular genetic markers also
have important application in the study of genetic diversity
and population structure.

3.1 AFLP genetic linkage map and female-specific AFLP
markers

A first generation genetic linkage map in C. semilaevis was
established based on amplified fragment length poly-
morphism (AFLP) technology. The AFLP-based genetic
map has a total length of 934.6 cM and an average spacing
of 8.4 cM. A total of 137 markers including 103 AFLP
markers, 33 microsatellite markers, and one female-
specific DNA marker were mapped on 20-six linkage
groups (LGs)”). This was the first genetic linkage map for
C. semilaevis, and it delivered great potential applications
in the development of marker-assisted selection breeding
techniques.

Through validation tests in artificially propagated fish
individuals, seven AFLP molecular markers were verified
as specifically present in females, but absent in male
C. semilaevis™. According to the flanking sequence of
the marker, CseF382, an easy-to-use and quick PCR
detection method was successfully developed for distin-
guishing the female (ZW) and male (ZZ) half-smooth
C. semilaevis (Fig. 4a)®*). This was the first genetic
molecular marker that could successfully differentiate the
sex of C. semilaevis, and it has been widely applied in

differentiating male (ZZ) and female (ZW) individuals in
culturing fish. However, as a dominant inheritance
molecular marker, this AFLP marker cannot distinguish
homozygotes from heterozygotes. Therefore, new and
accurate co-dominant molecular markers are required,
which can distinguish ZW females and WW super-
females.

3.2 Microsatellite genetic linkage map and sex-specific SSR
markers

Microsatellites, or simple sequence repeats, represent co-
dominant molecular genetic markers, which are abun-
dantly present within genomes. They are short segments of
DNA that have a repeated sequence. Due to a high level of
polymorphism, a relatively small size and rapid detection
protocols, microsatellite markers have been widely used in
construction of genetic linkage maps, quantitative traits
mapping and identification of genes or mutation respon-
sible for a given trait for marker-assisted breeding
programs.

Considerable efforts have been made to identify
microsatellite markers and quite a number of polymorphic
microsatellite markers have been characterized in
C. semilaevis”® '"*>). These markers have facilitated the
evaluation of the genetic diversity, assessment of important
quantitative traits and brood stock management of this
species. In 2012, a high density microsatellite genetic
linkage map, which is considered as the second-generation
genetic map of C. semilaevis, was published (Fig. 5)81,
Female and male C. semilaevis were separately used to
build sex-specific maps, which were then integrated into a
high quality consensus microsatellite genetic linkage map.
On this map, a total of 1007 microsatellite markers and
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Fig. 4 Genetic sex identification of the half-smooth tongue sole using sex-specific markers. (a) AFLP genetic marker CseF382;
(b) microsatellite genetic markers CseF-SSRI: (1) identification of females (ZW) and males (ZZ) (1-12, females; 13-24, males);
(2) identification of males (ZZ) and super-females (WW) in mitogynogenetic embryos( 3, 21, 24, 35 are super-females; others are males)

(adapted from Chen et al.>*l).
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Fig. 5 Microsatellite linkage map for Cynoglossus semilaevis. The consensus genetic map comprises 1 009 markers assigned to 21
linkage groups (LG1-LG21). Genetic distances in Kosambi centimorgans are listed on the left side of the linkage groups, and markers are
listed on the right side of the linkage groups (adapted from Song et al.t*)).
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two SCAR markers located in 21 linkage groups were
mapped, covering a total of 1 624 cM with an average
interval of 1.67 ¢cM™®!. Of particular interest are 812 and
785 positions identified to be unique in female and male
fish, respectively. For this map, a total of 159 sex-linked
SSR markers were identified and five sex-linked micro-
satellite markers were validated as being associated with
sex in a large number of individuals selected from
different families. Notably, after large-scale validation in
C. semilaevis population, the SSR marker CseF-SSR was
verified to be highly effective in sex discrimination for
C. semilaevis (Fig. 4b)?*. Using this marker, the PCR
amplification of the genomic DNA produced one DNA
band of 206 bp in ZZ males, two DNA bands of 206 bp and
218 bp in ZW females, and one DNA band of 218 bp in
WW super-females®¥. Currently, the CseF-SSR marker is
used as the workhorse to differentiate the genetic female,
male and super-female fish for the practical operation of
sex determination. This sex-linked molecular marker is
able to identify the genetic sex of ZW and WW of
gynogenetic diploids of C. semilaevis, a critical technical
prerequisite, providing a foundation for molecular sex
control techniques.

3.3 SNP genetic linkage map and SNP markers

Recently, markers based on Single Nucleotide Polymorph-
isms (SNPs) have gained increasing popularity due to their
abundance in the genomes and their amenability for high-
throughput detection techniques. The SNP markers are
excellent for studying complex genetic traits and for
understanding the genomic evolution, as well as popula-
tion genetics. The availability of whole genome sequences
of C. semilaevis sole provided a foundation for large-scale
comparative genomics research and SNP marker identifi-
cation. Using genomic re-sequencing techniques, a high
density consensus genetic linkage map was developed for
a C. semilaevis family of 216 individuals. On this map,
12 142 SNPs are assigned to 22 linkage groups, one more
than the haploid number of chromosomes of C. semilae-
vist). The average marker interval is 0.326 ¢cM and the
total linkage distance is 1 900.47 c¢cM, which represents a
high marker density that could not be achieved with other
classes of genetic marker.

4 Biological technology for sex control in
C. semilaevis

Female and male C. semilaevis have distinctly different
growth rates and morphology. Therefore, a key aim in
C. semilaevis aquaculture is the improvement of pheno-
typic female production with the desired growth traits to
maximize profitability. Genetic engineering for sex control
and monosex cultivation is a feasible and effective

approach, and of potentially great benefit for both research
and production.

4.1 Artificial gynogenesis

Gynogenesis is a powerful approach to producing a
population of homozygotes, studying sex determination
mechanisms and developing pure lineages in fish. In
artificial gynogenesis, eggs are activated by heterogeneous
or inactivated sperms, and the genetic information/
chromosomes of offspring are inherited solely from the
mother. The induction process mainly involves two steps,
the inactivated sperm stimulation and the diploidization of
female chromosomes. There are two types of artificial
gynogenesis: meiogynogenesis and mitogynogenesis. In
meiogynogenesis, diploidization of the chromosome set is
performed by blocking the extrusion of the second polar
body. In mitogynogenesis, chromosome diploidization is
performed by blocking the first cleavage. Theoretically, in
mitogynogenetic embryos, almost all the loci are homo-
zygous, suggesting it is a promising strategy for pure line
establishment, monosex population production, genetic
mapping and species preservation.

Since the C. semilaevis has a female heterogametic
(ZW) sexual chromosome system, artificial gynogenetic
induction makes it possible to generate normal males (ZZ)
and super-females with WW chromosomes. When super-
females are available, all-female (ZW) populations can be
produced through crossing the WW super-females with
normal males (ZZ)"!. Therefore, artificial gynogenesis is a
promising method to control the sex and produce all
female progeny of C. semilaevis. Both meiogynogenesis
and mitogynogenesis protocols have been developed for
C. semilaevis®>*. Cryopreserved Lateolabrax japonicas
(sea perch) sperm are inactivated by UV light and then
used to trigger gynogenesis. Key parameters in chromo-
some diploidization treatment, including initiation time,
intensity of pressure or temperature shock and treatment
duration, were optimized and validated to be effectivel®**!.
The gynogenetic haploid and diploid chromosome num-
bers were 21 and 42, respectively!®”. In gynogenetic
diploid, two huge WW chromosomes that had developed
by W chromosome duplication were observed in some of
the gynogenetic embryos (Fig. 6)P. In addition, the
average percentage of homozygosity reached 80.5% in the
mitogynogenetic diploid larvae. However, about 10% of
genetic females (WW) in the heterogeneous gynogenetic
larvae were observed, possibly because of a high death rate
of WW super-females.

In summary, the discovery of WW super-female
genotype clearly demonstrated that C. semilaevis has a
ZW sex determination mechanism®*!. The artificial
gynogenesis technology provides an important tool for
the investigation of sex determination mechanism,
breeding of all-female stock, isolation of the sex
determining loci and sex manipulation in C. semilaevis.
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Fig. 6 Chromosome analysis of normal embryos and gynoge-
netic embryos. (a) Normal male tongue sole; (b) gynogenetic
haploids; (c) gynogenetic diploids, showing a ZZ individual;
(d) gynogenetic diploid embryos, showing a WW individual, two
huge WW chromosomes were observed (arrowhead) (adapted
from Chen et al.*}).

More research is needed to further optimize technical
parameters and improve the survival rate of the WW super-
female fry, followed by extension to ensure application in
large-scale gynogenetic fry production.

4.2 Breeding fry production with high proportion of
females

Although females grow fast and are thus the preferred
gender for C. semilaevis aquaculture, only about 20%
(ranging from 10% to 30%) of breeding C. semilaevis fry
are phenotypic females (while the theoretical percentage of
genetic females is 50%). The primary reason for this
phenomenon is the special features of pseudo-males.
Firstly, it has been observed that the proportion of
phenotypic females in the F; generation from pseudo-
males is considerably lower than from normal males.
Secondly, in the offspring of parental pseudo-males, sex
reversal of genetic females to pseudo-males is common
and reaches about 94%. Therefore, the offspring of
parental pseudo-males are dominantly males, which
influence the overall production. Therefore, in the artificial
propagation of C. semilaevis, if the pseudo-males can be
isolated from the breeding population and only normal ZZ
males are used as the male parent, the breeding yield of
phenotypic females, as well as the overall fish production
can be considerably improved.

Using the sex-specific biomarkers, the genetic sex of fish
individuals can be precisely confirmed, regardless of their
phenotypes. Therefore, sex-specific markers are needed for
the development of breeding fry production with a high
proportion of females. With this technique, the genetic
males (ZZ) and pseudo-males (ZW) are separated and only

Sex-specific SSR marker
to SCAR

!

Construction of on-site
rapid and precise sex
identification technique

|

Genetic sex identification
of male fish

|
! ¢

Pesudo- Normal ¢ Females
males (ZW) males (ZZ) (ZW)
| Discarded | High female fry |

Fig. 7 Roadmap of the high female breeding technology.
SSR, simple sequence repeat; SCAR, sequence-characterized
amplified region.

the genetic males are used for breeding (Fig. 7). It was
demonstrated that the proportion of the phenotypic females
in the offspring improved to about 42%, representing an
increase of 20% compared to that obtained with un-
selected male parents. This technique is now successfully
applied to the artificial breeding of C. semilaevis and has
significantly promoted commercial fish production and
enhanced the financial returns.

5 Conclusions and future perspectives

C. semilaevis has useful traits that have been utilized for
monosex breeding as well as for research on sex
determination mechanisms in fish. Recent advancements
in whole genome sequencing have been essential for the
elucidation of the genotype and genetic foundation of
phenotypic traits, and inheritance of sex determination in
C. semilaevis. Epigenetic analysis has shown that heritable
methylation modifications in conserved sex-related path-
ways and genes is crucial in the temperature induced sex
reversal process. Genetic linkage maps have promoted
genomic research on significant economic traits and
breeding. Breakthroughs in the characterization of highly
efficient sex-specific marker have provided a foundation
for sex control, and have speed up the development and
application of breeding techniques, such as fry production
with a high proportion of females. Artificial gynogenesis
techniques have also been developed and successfully
induced WW super-females, which are useful for studying
sex determination mechanisms and development of pure
lines in C. semilaevis. However, there are still many issues
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remaining to be studied and resolved. For example,
although the putative male-determining gene has been
identified as dmrtl, its specific function, as well as that of
other sex-related genes needs to be experimentally
validated. In addition, little is known about genes crucial
for controlling gonad differentiation and female gonad
development. Moreover, it is necessary to tighten the
connection between knowledge of sex determination
mechanisms and breeding practice to ensure fish produc-
tion is based on the best available information. Researchers
also need to meet the challenge of some key technical
problems in sex control techniques, such as improving the
survival rate of super-females and reducing the cost of
artificial gynogenesis. Expanded applications of such
technological advancements promise to increase the
scale, sustainability and profitability of aquaculture of
C. semilaevis.
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