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Abstract Myostatin is a transforming growth factor-β
family member that normally acts to limit skeletal muscle
growth. Myostatin gene (MSTN) knockout (KO) mice
show possible effects for the prevention or treatment of
metabolic disorders such as obesity and type 2 diabetes.
We applied chromatography and mass spectrometry based
metabonomics to assess system-wide metabolic response
of heterozygous MSTN KO (MSTN+/–) swine. Most of the
metabolic data for MSTN+/– swine were similar to the data
for wild type (WT) control swine. There were, however,
metabolic changes related to fatty acid metabolism,
glucose utilization, lipid metabolism, as well as BCAA
catabolism caused by monoallelic MSTN depletion.The
statistical analyses suggested that: (1) most metabolic
changes were not significant in MSTN+/– swine compared
to WT swine; (2) only a few metabolic properties were
significantly different between KO and WT swine,
especially for lipid metabolism. Significantly, these
minor changes were most evident in female KO swine
and suggested differences in gender sensitivity to
myostatin.

Keywords myostatin, transforming growth factor-β
family, skeletal muscle, metabolic disorders, chromatogra-
phy, mass spectrometry, metabonomics

1 Introduction

Metabonomics is a systems approach for studying in vivo
metabolic profiles, which promises to provide information

on drug toxicity, disease processes and gene function at
several stages in the discovery and development process.
This approach can also be readily adapted to investigate the
functional consequences of genetic variation and transgen-
esis[1]. Metabolic changes are directly linked to phenotypic
changes, whereas gene expression changes are not; they
merely indicate the potential for an end-point change. As
such, metabonomics provides a useful connection between
the ‘omics’ platforms and actual tissue histology and
physiology.
Nuclear magnetic resonance, liquid chromatography-

gas chromatography (LC-MS) and gas chromatography-
mass spectrometry (GC-MS) are now routinely applied for
determination of the changes in metabolite profiles
associated with toxicity[2–8], human disease[9–11], pharma-
ceutical drugs[12–15], genetic modification[1,16–20], and
influencing factors such as age, strain, gender, dietary
difference and diurnal variations in rodents[21–30].
Myostatin, also called growth differentiation facor-8

(GDF-8) previously, is a transforming growth factor-β
(TGF-β) family member essential for the regulation of
muscle development or function[31,32]. The predicted
myostatin protein includes an N-terminal signal sequence,
a dibasic proteolytic processing site, and a C-terminal
domain following the processing site. The N-terminal
fragment following proteolytic processing has been most
commonly referred to as the propeptide, which is presumed
to be essential for the proper folding of the C-terminal
domain into a cystine knot structure. In the C-terminal
region, the myostatin sequence shows significant homol-
ogy to other family members, and is also capable of
binding the activin type II receptors, ActRIIA and ActRIIB
in vitro[32–34]. Loss of myostatin activity has been studied
in mice[35–39], cattle[40–43], sheep[44], dogs[45], humans[46],
and swine (unpublished data). The results indicate that the
function of myostatin appears to have been conserved
across these species. Significantly, myostatin gene (MSTN)
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knockout (KO) mice have beneficial effects on fat and
glucose metabolism and this approach may possibly be
effective for the prevention or treatment of obesity and
type 2 diabetes[33,38]. This study aimed to research the
metabolic effects in heterozygous MSTN KO (MSTN+/–)
swine by LC-MS and GC-MS.

2 Materials and methods

2.1 Animals

All experiments were conducted in accordance with the
guidelines of China on the Use and Care of Laboratory
Animals. Swine were housed in the same conditions and
fed food and water ad libitum. MSTN+/– Large White pigs
were produced by homologous recombination and somatic
cell nuclear transfer according to our previously published
methods[47,48]

2.2 Sample collection

Blood of 26 F1 MSTN+/– pigs (Table 1) were obtained in
the morning following an overnight fast to minimize
metabolic effects of inter-individual variations of food
intake. Blood was centrifuged and plasma was taken and
divided into two parts, one part (about 1 mL) was sent to
the veterinary hospital of China Agricultural University,
Beijing, China for clinical laboratory analysis. Another
part (about 500 μL) was stored at –80°C until metabo-
nomics analyses.

2.3 Sample preparation

Plasma samples (100 mL) were extracted using an
automated MicroLab STAR® system (Hamilton Company,
UT, USA) and maintained at 4°C throughout the extraction
process. Recovery standards were added prior to the first
step in the extraction process for quality control (QC)
purposes. The samples were extracted using a proprietary
series of organic and aqueous extractions according to the
methods of Lawton and colleagues[49]. The resulting
extract was divided into two equal aliquots, one for LC/
MS and one for GC/MS. Aliquots were placed on a
TurboVap® (Zymark, Runcorn, UK) to remove the organic
solvent, frozen and dried under vacuum overnight.
Samples were then prepared for the appropriate instrument,

either LC/MS or GC/MS.

2.4 LC/MS and GC/MS analysis

LC/MS was conducted using Waters Acquity UPLC (ultra
performance liquid chromatography) equipment (Waters,
Milford, MA) coupled to an LTQ mass spectrometer
(Thermo Fisher Scientific, Waltham, MA) equipped with
an electrospray ionization (ESI) source and linear ion-trap
(LIT) mass analyzer. Two separate UPLC/MS injections
were performed on each sample which contained 11 or
more injection standards at fixed concentrations. One
aliquot was analyzed using acidic positive ion optimized
conditions and the other using basic negative ion optimized
conditions in two independent injections using separate
dedicated columns. Extracts reconstituted in acidic condi-
tions were gradient-eluted using water and methanol both
containing 0.1% formic acid, while the basic extracts,
which also used water/methanol, contained 6.5 mmol$L–1

ammonium bicarbonate. The MS analysis alternated
between MS and data-dependent MS2 scans using dynamic
exclusion.
The derivatized samples destined for GC/MS were

analyzed on a Thermo-Finnigan Trace DSQ fast-scanning
single-quadrupole MS (ThermoElectron Corporation)
using electron impact ionization. The GC column was
5% phenyl, the initial oven temperature was 40°C and then
ramped to 300°C for a 16 min. period. The samples were
re-dried under vacuum desiccation for a minimum of 24 h
before being derivatized under dried nitrogen using
bistrimethy-siyl-triflouroacetamide (BSTFA). GC/MS
was tuned and calibrated daily for mass resolution and
mass accuracy[50].

2.5 Compound identification

Compounds were identified by automated comparison to
Metabolon’s reference library entries using Metabolon’s
proprietary software (http://www.metabolon.com) devel-
oped for creating library entries from known chemical
entities and then automatically fitting those spectra to
experimentally derived spectra. As of writing, more than
1000 commercially available purified standard compounds
had been acquired and registered in the laboratory
information management system for distribution to both
the LC and GC platforms for determination of their
analytical characteristics. The combination of chromato-

Table 1 Experimental animals

Group Sample Bodyweight (mean�SD)/kg Generation Description

WT
Male (n = 11) 114.36�4.02

F1 Wild type adult swine (MSTN+/+)
Female (n = 3) 113.92�5.40

KO
Male (n = 7) 113.74�5.35

F1 Heterozygous MSTN KO adult swine (MSTN+/–)
Female (n = 5) 114.43�5.24
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graphic properties and mass spectra give an indication of a
match to the specific compound or an isobaric entity.
Additional entities could be identified by virtue of their
recurrent nature (both chromatographic and mass spectral).
These compounds have the potential to be identified by
future acquisition of a matching purified standard or by
classical structural analysis.

2.6 Data normalization

For studies spanning multiple days, a data normalization
step was performed to correct variation resulting from
instrument inter-day tuning differences. Essentially, each
compound was corrected in run-day blocks by adjusting
medians to 1.0 and normalizing each data point proportio-
nately (i.e., block correction, Fig. 1). For studies that did
not require more than one day of analysis, no normal-
ization was necessary, other than for purposes of data
visualization.

2.7 Statistical analysis

Welch’s t-tests and random forest analyses were used for
significance tests and classification analysis, respectively.
Welch’s t-test is an adaptation of Student’s t-test intended
for use with two samples having possibly unequal
variances[51]. Random forest is a supervised classification
technique based on an ensemble of decision trees[52,53]. In
contrast to a t-test, the random forest method tests whether
the unknown means for two populations are different or
not. An ANOVAwas also performed with sex factor in this
study. Statistical analyses are performed with the program
R (http://cran.r-project.org/).

3 Results

3.1 Clinical laboratory analysis

As shown in Table 2, most clinical laboratory data revealed
no significant differences between the WT and KO swine,
indicating that the two groups of swine had a similar health
status. The plasma level of alanine transaminase and lactic
dehydrogenase (LDH) was significantly lower in KO male
swine (P< 0.05), and the plasma LDH level was very
significantly lower in KO female swine (P< 0.01). These
minor differences in clinical data suggest that there may
have been minor metabolic differences between the two
group of swine.

3.2 Metabolomic analysis

Using LC/MS and GC/MS analysis, 300 compounds
matched a named structure in Metabolon’s reference
library; these compounds came from the following super
metabolic pathways: amino acid, peptide, energy, lipid,
nucleotide, xenobiotics, cofactors and vitamins. Of these,
43 biochemicals were different significantly (P£0.05)
between the experimental groups. The statistical changes
were calculated by the ratio of their group means and are
listed in Table 3. These data suggest that loss of myostation
has minimal effects on the biochemical profile ofMSTN+/–

swine. Significantly, these minor changes were most
evident in female MSTN KO plasma (female to male
ratio of 35 : 10, Table 3) and may reflect gender specific
differences in sensitivity to myostatin. Furthermore, the
total number of significant changes observed in male
MSTN KO plasma (10) was below the number expected by

Fig. 1 Visualization of data normalization. (a) Before correction; (b) after correction.
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random chance (15) and therefore suggests the metabolic
profile ofMSTN KO male and wild-type porcine is similar.
This overlap between WT and MSTN KO male biochem-
ical profiles is further revealed by principal component
analysis (Fig. 2). Nominal changes observed between WT
and MSTN KO female plasma are highlighted below.

3.2.1 Fatty acid metabolism

As shown in Appendix A (Table S1), an accumulation of

essential, dicarboxylate and long-chain fatty acids was
observed in KO swine plasma compared to WT.
Importantly, these differences were predominantly
observed in myostatin deficient females, but not males.
Elevated free fatty acid levels in the blood are often
suggestive of an increase in lipolysis. Lipolysis is the
process by which triglycerides are hydrolyzed into free
fatty acids that can then be further degraded through beta
oxidation. Similarly, free carnitine levels were decreased in
MSTN KO plasma, while carnitine conjugated lipids such

Table 2 Clinical laboratory analysis of KO (MSTN+/–) and WT (MSTN+/+) swine

Item
KO (MSTN+/–) WT (MSTN+/+) P

Male Female Male Female Male Female

WBC/( � 109$L–1) 20.8 (4.8) 23.5 (1.0) 26.1 (6.8) 25.4 (7.4) 0.0923 0.6984

RBC/( � 1012$L–1) 6.3 (0.8) 6.9 (0.5) 6.9 (0.5) 6.0 (0.7) 0.1446 0.1387

HGB/(g$L–1) 106 (12.8) 120.2 (7.8) 117.8 (3.8) 107 0.0 (15.9) 0.0742 0.2838

HCT/% 34.7 (4.4) 39.1 (2.9) 38.1 (2.0) 34.3 (4.1) 0.1221 0.1666

MCV/fL 54.9 (1.2) 56.4 (2.5) 55.2 (2.4) 56.7 (1.0) 0.7692 0.8638

MCH/pg 16.8 (1.0) 17.4 (1.1) 17.1 (1.2) 17.6 (0.7) 0.5846 0.7050

MCHC/(g$L–1) 307 (22.9) 308 (10.3) 310.3 (15.2) 312.0 (15.0) 0.7272 0.7094

PLT/( � 109$L–1) 228 (119.7) 321 (103.7) 329.1 (103.2) 351.7 (92.4) 0.1933 0.6870

TBIL/(mmol$L–1) 3.57 (2.44) 4.80 (3.11) 3.10 (1.91) 1.00 (0) 0.6773 0.0525

DBIL/(mmol$L–1) 12.14 (1.46) 12.80 (2.17) 12.60 (1.17) 11.33 (0.58) 0.5067 0.2135

ALT/(U$L–1) 56.43 (11.31)a 69.60 (9.91) 71.70 (9.15)a 58.00 (7.21) 0.0128 0.1091

AST/(U$L–1) 113.00 (83.66) 83.20 (7.76) 121.40 (63.12) 71.33 (34.02) 0.8265 0.6091

TP/(g$L–1) 63.03 (8.08) 69.82 (2.19) 73.24 (5.75) 71.23 (9.38) 0.0164 0.8200

ALB/GLO 1.51 (0.32) 1.60 (0.19) 1.43 (0.17) 1.27 (0.24) 0.5586 0.1297

GGT/(U$L–1) 37.14 (9.42) 110.80 (40.54) 40.90 (16.35) 40.33 (19.09) 0.5587 0.0164

ALP/(U$L–1) 19.43 (17.92) 10.00 (7.91) 11.40 (7.03) 5.33 (3.21) 0.2956 0.2895

BUN/(mmol$L–1) 4.06 (1.45) 4.61 (0.45) 4.55 (0.90) 4.85 (1.25) 0.4515 0.7780

CRE/(mmol$L–1) 156 (17.72) 152 (10.92) 145 (19.46) 152 (28.36) 0.2551 0.9972

GLU/(mmol$L–1) 4.27 (1.81) 3.43 (0.67) 4.62 (1.32) 3.99 (0.43) 0.6700 0.2018

TG/(mmol$L–1) 0.56 (0.24) 0.52 (0.13) 0.40 (0.09) 0.36 (0.12) 0.1367 0.1372

CHO/(mmol$L–1) 1.94 (0.33) 2.33 (0.15) 2.08 (0.19) 2.10 (0.15) 0.3294 0.0899

CK/(U$L–1) 2215 (750.5) 2014.00 (1121.3) 1726 (769.7) 758 (321.9) 0.2122 0.0659

LDH/(U$L–1) 731 (221.3)a 894 (78.3)b 1170 (531.3)a 475 (42.0)b 0.0362 0.0001

AMY/(U$L–1) 2442 (962.5) 3160 (1126.1) 2179 (1028.3) 1857 (976.0) 0.5989 0.1463

Note: Data are mean (SD). WBC, white blood cell; RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PLT, platelets; TBIL, total bilirubin; DBIL, direct bilirubin; ALT, alanine transaminase;
AST, aspartate transaminase; TP, total protein; ALB, albumin; GLO, globulin; GGT, gamma-glutamyl transpeptidase; ALP, alkaline phosphatase; BUN, blood urea
nitrogen; CRE, creatinine; GLU, glucose; TG, triglyceride; CHO, cholesterol; CK, creatine kinase; LDH, lactic dehydrogenase; AMY, amylase. a, significantly
different between two groups (P< 0.05); b, very significantly different between two groups (P< 0.01).

Table 3 Significantly altered biochemicals between the experimental groups

Biochemicals KO/WT KO-M/WT-M KO-F/WT-F

Total (P£0.05) 43 10 35

Fold of change≥1.00 29 2 25

Fold of change< 1.00 14 8 10

Note: KO, (MSTN+/–); WT, (MSTN+/+); M, male; F, female.
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as palmitoylcarnitine were modestly elevated (Fig. 3).This
suggests that the conjugation of long-chain free fatty acids
to carnitine prepared it for transport into the mitochondria
and subsequent oxidation. In agreement with markers of
lipid oxidation, modest elevations in glycerol and 3-
hydroxybutyrate (BHBA) was also observed in MSTN KO
female plasma (Fig. 3). While glycerol can be utilized for
the synthesis of triacylglycerides, it is also a catabolic
product that is generated during their degradation. 3-
hydroxybutyrate is a ketone body that is generated from
excess acetyl-CoA that often results from enhanced fatty
acid oxidation. Together, these results suggest the absence
of myostatin in female swine may selectively result in
increased fatty acid oxidation.

3.2.2 Glucose utilization

Both the levels of glucose and glycolytic intermediates,

such as glucose 6-phosphate, 3-phosphoglycerate and
lactate, failed to differ in comparison to WT plasma
(Fig. 4). Similarly, significant changes were not observed
in the sorbitol pathway, which can increase in the presence
of excess glucose, or pentose phosphate pathway.

3.2.3 Branched chain amino acid catabolism

In addition to protein synthesis, branched chain amino
acids (BCAA) are important in replenishing the tricar-
boxylic acid cycle (TCA) cycle through the generation of
acetyl-CoA and succinyl-CoA. In KO female plasma, the
BCAA catabolic products 4-methyl-2-oxopentanoate, 3-
methyl-2-oxobutyrate, and 3-hydroxyisobutyrate were
elevated compared to WT (Fig. 5). Considering that
glucose and lipid metabolism should be sufficient to fuel
the TCA cycle, the accumulation of BCAA intermediates
may be indicative of muscle turnover.

Fig. 2 Principle component analysis (PCA) for the two experimental groups
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Fig. 3 Lipid metabolism. (a) Box plots of representative biochemicals between groups, median scaled values are presented on the y-axis;
(b) lipid metabolic pathway.
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3.2.4 Other metabolic pathway

Besides the above pathways, this work also compared

metabolites of other pathways between KO and WT swine,
such as amino acid, peptide, carbohydrate, energy,
nucleotide, xenobiotics, cofactors and vitamins. Although

Fig. 4 Glucose metabolism. (a) Glucose metabolic pathway; (b) box plots of representative glucose and glycolytic intermediates
between groups.

Fig. 5 BCAA catabolism. (a) Box plots of the BCAA catabolic key products, there were significant differences (P< 0.05) only between
females; (b) BCAA catabolic pathway.
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minor differences in metabolites were present, by and
large, there were no significant metabolic differences
between the two groups (data not shown).

4 Discussion

4.1 Influencing factors in metabolite profile

Bollard et al. found by metabonomics that time of
sampling (day and night) markedly affected the metabo-
lites profiles[26]. In the case of C57BL10J mice, urine
samples collected in the morning were found to contain
higher concentrations of creatin, hippurate, trimethyla-
mine, succinate, citrate and a-ketoglutarate, and decreased
amounts of taurine, trimethylamine-N-oxide, spermine and
3-hydroxy-iso-valerate compare with samples collected in
the afternoon[27,54]. Except for the diurnal variation, there
are many other factors, such as age, strain, diet and gender,
that also affect metabolites profiles[23,24,30,55]. This study
attempted to minimize the impact of such factors on the
metabolic results, by sampling in the morning (8:00–
10:00), after overnight fasting, feeding the same forage,
selecting age and gender matched controls and half-sibling
animals.

4.2 Metabolomic analysis

Published studies have clearly indicated that adipogenesis
decreased inMSTN KOmice[33,38]. This study showed that
fatty acid oxidation increased in MSTN+/– female swine, it
also indicated that adipose may be decreased in MSTN+/–

female swine. Together with reduced adipose and
increased fatty acid oxidation, the lipid profile in MSTN
null animals was improved. Adult male homozygous
MSTN KO (MSTN–/–) mice had significantly lower serum
cholesterol and triglyceride levels compared to WT
mice[38,56,57]. This study has shown higher long chain
fatty acids and glycerol levels in KO swine, and that KO
swine had lower triglyceride levels compared with WT
swine. However, no significant difference in cholesterol
between KO and WT swine was found.
As found in fatty acid oxidation, this study also observed

difference in the MSTN KO female in BCAA catabolism.
Similar to Lee’s findings[39], this study also indicated a
maternal effect on metabolic reaction results, most likely
from prenatal transfer of myostatin or some other mediator
from mother to fetus.
Circulating glucose levels often serve as an indicator of

systemic metabolic status. However, no significant differ-
ence in glucose metabolism was observed in KO swine in
this study. Together with lipid metabolism, the results
suggests that glucose utilization was unaltered in MSTN+/–

swine, which differs from published reports of increased
glycolysis and decreased lipid oxidation in myostatin
deficient skeletal muscle in rodents[37–39].

The published studies, mentioned above, have also
demonstrated: (1) loss of myostatin activity can have
beneficial metabolic effects in two genetic models of
obesity and type 2 diabetes, and (2) myostatin inhibitors
may be useful agents for the prevention or treatment of
metabolic disorders such as obesity and type 2 dia-
betes[33,38]. While the current study did not find any strong
evidence for the prevention or treatment of obesity and
type 2 diabetes in swine by lipid and glycose metabolism,
there were minor changes in lipid and BACC metabolism.
We conclude that the effect may not be obvious inMSTN+/–

animals, and we will confirm and improve these results
when enough MSTN –/– swine are produced in future.

5 Conclusions

This study demonstrated a few significant differences
between WT andMSTN+/– swine plasma. In the absence of
myostatin, lipid oxidation, but not glucose utilization, was
selectively elevated in female plasma. In contrast, the
metabolic profile of WT and MSTN KO males were
indistinguishable. Ultimately, these findings have impor-
tant implications for livestock development, suggesting
MSTN+/– swine may be metabolically similar to WT swine.
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