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Abstract The main characteristic of the water resources
system (WRS) is its great complexity and uncertainty,
which makes it highly desirable to carry out a risk analysis
of the WRS. The natural environmental, social economic
conditions as well as limitations of human cognitive ability
are possible sources of the uncertainties that need to be
taken into account in the risk analysis process. In this
paper the inherent stochastic uncertainty and cognitive
subjective uncertainty of the WRS are discussed first, from
both objective and subjective perspectives. Then the
quantitative characterization methods of risk analysis are
introduced, including three criteria (reliability, resiliency
and vulnerability) and five basic optimization models (the
expected risk value model, conditional value at risk model,
chance-constrained risk model, minimizing probability of
risk events model, and the multi-objective optimization
model). Finally, this paper focuses on the various methods
of risk analysis under uncertainty, which are summarized
as random, fuzzy and mixed methods. A more compre-
hensive risk analysis methodology for the WRS is
proposed based on the comparison of the advantages,
disadvantages and applicable conditions of these three
methods. This paper provides a decision support of risk
analysis for researchers, policy makers and stakeholders of
the WRS.
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1 Introduction

The water resources system (WRS) is the sum total of
available water from a variety of sources that can be used
by humans within a certain region[1]. It comprises many

interactive parts with multi-water resources, multi-regions
and multi-users, such as rivers, streams, lakes, ground-
water regimes, reservoirs, dams and bifurcations, as well as
cities, towns, and water users. At the same time, climate
change and human activity could affect the systems at a
regional scale and lead to more significant spatial and
temporal variations of water resources in the basin and thus
the associated environmental and ecological conditions.
Therefore, available water supply is one of the crucial
issues that have been seriously restricting the global social
and economic development and is likely to continue to do
so in the future. This will lead to increasingly severe water
scarcity[2] and increased frequency of incidents of water
pollution, drought and flood[3]. These problems increase
the WRS higher complexity and uncertainty[4]. Therefore,
humans need to confront the ensuing droughts, floods,
water pollution, while they exploit and utilize water
resources. Such adverse events inevitably lead to risks,
such as economic loss and ecological damage. Naturally
the following series of questions are elicited[5,6]: What are
the risks? What are the source of these risks? What adverse
events mentioned above will lead to failure? How likely is
this? How severe is it? To solve the above questions, the
implications of risk should be first understood.
Risk is the opposite of reliability, that is, the risk can be

expressed as one minus the reliability. Risk is always
intertwined with uncertainties and hazards[7]. Risk can be
defined as stochastic characteristics of potential output,
while uncertainty is derived from the relative lack of
knowledge[8]. A distinction between risk, uncertainty and
hazard was made by Kaplan and Garrick in 1981[6]. Hazard
emphasizes the sources of risk while risk often refers to the
cause of hazardous things, which is a comprehensive
embodiment of uncertainty and loss[9]. Risk can be
minimized, but it cannot be eliminated. When risk is
introduced to the WRS, the objects of risk are the
undesirable events (i.e., adverse events) under certain
temporal-spatial circumstances, and the extent of the risk is
measured mainly by the probability of risk and the
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corresponding loss[10]. In the WRS, risk is caused by
dynamic features of uncertainty. Thus, evaluating uncer-
tainty is essential for the qualitative description or
quantitative expression of risk.
There are always uncertainties in the WRS. What are the

uncertainties? What are the sources of these? Much
research has attempted to answer these questions. For
example, there are two major sources of uncertainty in the
WRS: randomness and lack of knowledge[11]. The sources
of uncertainty in the WRS can be summarized into three
aspects[12]: natural environmental uncertainty (e.g., pre-
cipitation, stream flow, water demand and climate change);
social economic uncertainty (e.g., population changes,
economic development, policy variations and sudden war);
and limitations of human cognitive ability (e.g., uncertain-
ties in the model objectives, constraints and parameters/
variables). Therefore, it is difficult to grasp all information
of the WRS. Generally, the problem can be simplified
appropriately by identifying the key factors that generate
risk.
Based on risk identification, expressions of uncertainty

can be explored. There is uncertainty in the system because
of inherent randomness or imprecision in the modeling of
physical phenomena[13]. Hence, the uncertainty has been
divided into the inherent variability and error estimates in
the risk analysis[14]. However, from the objective and
subjective perspectives, the uncertainty can be divided into
stochastic uncertainty and subjective uncertainty in the
process of risk analysis[15]. Stochastic uncertainty indicates
the inherent characteristics of the system itself, and can be
expressed in different ways. Subjective uncertainty
indicates people’s cognitive ability to further describe the
characteristics of the system. The subjectivity emphasizes
the cognitive behavior when considering the system. In
many cases, it is hard to collect completely objective
information about the WRS, because this is restricted by
the system and human consciousness and so on. Therefore,
when there is a lack of data, or only availability of
imprecise data, researchers can estimate the overall
situation based on limited sample sizes (either measured
or simulated) and further evaluate the risk in the WRS[16].
In the past decades, a broad spectrum of literature

has been published for risk analysis and risk evaluation of
the WRS, considering water shortage[4,17,18], reservoir
operational management[19,20], water pollution manage-
ment[21–24] as well as floods[25–29]. Some of the basic
variables frequently fluctuate with seasonal variation in the
WRS, such as stream flow and concentration of pollutants.
In addition to analyzing a large amount of data by
statistical methods, simulation and prediction of random
events can also be performed[30,31]. The initial stochastic
analysis methods merely focused on digital features like
mean and variance, but they were incapable of predicting
the likelihood and severity of system failure. System
failure can be described by three criteria: reliability,
resiliency and vulnerability. These criteria are used to

evaluate system performance of a water reservoir[4]. If the
available data collected are inadequate, other insurmoun-
table problems arise, and the applicability of the stochastic
methods will be significantly diminished. Therefore, three
fuzzy reliability measures have been developed, including
reliability-vulnerability index, robustness index and resi-
liency index. These indices are capable of handling
complicated fuzzy sets and system conditions, and it is
an effective way to solve problems for which stochastic
methods are inapplicable[32]. However, a given fuzzy set
implies the need for membership function of the specific
expression. Such fuzzy methods that greatly depend on
human subjectivity will be brought into question even
when expert opinion has been used. Also, the study issues
are complex, for example, the characteristics of multi-
variables in the risk evaluation model are diverse, and
some of these have strong randomness, while others have
strong fuzziness. Using only one method (a stochastic
method or a fuzzy method) will simplify the problem by
ignoring the features of the secondary variables, which will
naturally affect the reliability and accuracy of the results.
Accordingly, a mixed method combining stochastic
methods with fuzzy methods has been developed. For
instance, the Monte Carlo stochastic simulation method
can be used to help generating fuzzy numbers, and obtain
more abundant results and the probability of risk[33]. Based
on stochastic simulation to estimate the inherent random
uncertainty of parameters, human-induced uncertainty by
fuzzy analysis is presented. The risk assessment results
will be more abundant because of the combination of
objective with subjective uncertainties[26]. However, the
majority of the literature describes risk evaluation models
for specific or particular problems. Methods to fully
quantify the probability and loss for the risk in the WRS
have rarely been reported.
Therefore, considering the relationship between risk and

uncertainty (Fig. 1), this paper first introduces the com-
monly used risk analysis evaluation indices and optimiza-
tion models and, based on this, the existing methods of risk
analysis of the WRS are summarized as stochastic, fuzzy
and mixed methods. Then, the applicable conditions of
various mathematical analysis methods from quantitative
perspective are analyzed in depth. Through comparing the
advantages and disadvantages of these three methods, this
study provides decision support of risk analysis for the
researchers, policy makers and other stockholders by
formulating a more comprehensive risk analysis metho-
dology for the WRS.

2 Risk evaluation indices and optimization
models

Identification of risk should be considered first when
analyzing the risk in the WRS under uncertainty. That is,
all possible sources of uncertainty resulting in system
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failures should be clearly shown. Taking water shortages as
an example to identify risk, Fig. 2 shows the conceptual
model for identifying the risk factors underlying the risk of
water shortages[34].
Figure 2 illustrates the complexity of risk analysis in the

WRS. The procedure can be detailed as sources of risk, risk
factors, key risk factors and risk consequences. If the loss
is selected to indicate the final risk in the WRS, the
relationship between the loss and corresponding frequency
will be established. The key factors that affect the loss from
water shortages are the reduced availability of water and
the increased price of that water. Meanwhile, according to
comprehensive analysis of all the risk factors, the key
factors can be determined. The sources of risk should be
listed, including hydrological, hydraulic, structural and
supply-demand factors, prior to identifying the risk factors.
The second step is to quantify the risk and there are

various risk evaluation indices and optimization models
which can be used to measure the effects of the

uncertainty[32]. Decision makers can choose the evaluation
indices and optimization models, individually to evaluate
system performances, or the evaluation indices can be used
as objective functions or constraints in the optimization
models framework.

2.1 Risk evaluation indices

Many indices can be used to depict the performance of the
WRS. Among them, the mean and the variance are
frequently used. In general, the mean and the variance
describe the system average level and average deviation
from the mean of the parameters, respectively, but they can
hardly provide sufficient system information about
extremes and probability distribution when the risk failure
will occur[4].
Three criteria of risk evaluation can be considered for

evaluating the possible performance of the WRS as shown
in Table 1[4,10,35–37]:

Fig. 1 The framework of water resources system (WRS) risk analysis
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Using three aspects (i.e., uncertainty, sensitivity and
severity), the risk evaluation indices can be divided into
three criteria (reliability, resiliency and vulnerability). With
different mathematical expressions for the same criterion,
they can be further subdivided into six sub-criteria
(reliability, risk rate, resiliency, recurrence cycle, vulner-
ability and risk level). Taking the reliability as an example,
both reliability and risk rate indicate the concept of
probability that the WRS is in the normal or an
unsatisfactory state, respectively, which satisfies the
mathematical equation of α + r = 1. If α = 1 (r = 0),
then the system is in the normal state and has high stability.
On the contrary, if α = 0 (r = 1), then the system is in an
unsatisfactory state. In most cases, the values of α (r) are
typically between 1 and 0.
Reliability and risk rate are opposites with different

focuses on the running state of the WRS. Reliability holds
the concept of trust while the risk holds the concept of
doubt. However, both reliability and risk rate can only
indicate the possibility of system security or failure,
without reflecting the nature of risk events inadequately.
For example, neither reliability nor risk rate can describe
how severe or likely the consequences of a failure may be.
Hence, it is necessary to introduce other criteria to describe
it. When a failure inevitably occurs in the WRS, indices
like resiliency and recurrence cycle can be adopted to
measure how quickly the system returns to a running state.
Furthermore, means to describe the results of a failure and
their severity, the vulnerability and risk level are
introduced into evaluation indices[10,36].

In practical applications, a single evaluation index
provides insufficient information when the possible
sources of uncertainty are complex. Therefore, a single
index cannot accurately measure and evaluate the risk
(system performance). Appropriate combinations can be
chosen to carry on the comprehensive evaluation, fully
reflecting the risk of the WRS. Additionally, risk
evaluation indices can also be regarded as inputs of the
optimization model, using the results of optimization
models to reflect their advantages and disadvantages. Thus,
several risk analysis models are derived.

2.2 Optimization models

Based on the uncertainty theory, there are five ways to
formulate a risk analysis model.
(1) For the risk variables or risk losses in the water

resource allocation problems, the expected risk value
model was introduced[38–42]. The objective function can be
formulated as minimizing the expected value of risk losses,
and the constraints can also be expressed by the expected
value.
(2) Safeguarding measures should be taken to reduce

the risk in the WRS. In most cases, it is essential for
minimizing the expected maximum possibility of risk
losses, or minimizing the average value that exceeds a
certain risk loss threshold under a certain level of
confidence. The conditional value at risk model can be
formulated in response to the above issues[43–45].
(3) If it is allowed to violate the constraints under a

Fig. 2 Conceptual model for identifying the risk factors in the risk of water shortages
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certain level of confidence α (α2 [0, 1]), the probability for
constraints should be less than or equal to1-α. Then, the
chance-constrained risk model minimizing value at risk
chance can be formulated[46–49].
(4) Decision makers hope that the probability of risk

events should be as small as possible, i.e., minimizing the
probability of risk events under uncertainty constraints. For
this reason, the minimizing probability of risk event model
has been developed.
(5) From the perspective of the sustainable use of

resources, pursuing the maximum comprehensive benefits,
including economic, social and environmental, are more
desirable than simply pursuing economic benefit. In such
cases, it is necessary to formulate a multi-objective
optimization model based on uncertainty systems[50,51].
For each single objective, according to the actual situation,
decision makers can choose any model or any combination
of the four basic models as listed in Table 2[51,52].
Based on the above risk evaluation indices and

optimization models, risk analysis methods should be
considered after quantifying the risk events.

3 Risk analysis/assessment methods of
the WRS

The main risk analysis/assessment methods of the WRS
include subjective probability method (Delphi method)[8],
parameter analysis, extreme value statistics[53,54], uncer-
tainty method, support vector machine[55], and maximum
entropy risk analysis method[56]. Each method has its own
advantages and disadvantages, which should also be
analyzed specifically. If the risk evaluation indices are
random or fuzzy, uncertainty methods are adopted to solve
the problems.
Generally, decision makers can quantify the risk by two

major variables coinciding with the characteristics of the
information available and the data collected. Taking the
reliability as an example, (1) when the collected data or
samples are sufficient, it can be assumed that the stochastic
uncertainties obey a certain probability distribution (e.g.,

normal distribution, exponential distribution, Poisson
distribution, gamma distribution or Pearson type- III
distribution), then the risk can be quantified by using
probability and statistics methods, and (2) when the
samples are insufficient to support the stochastic prob-
ability distributions, fuzzy sets theory can be adopted as an
effective research tool to assess reliability using the
concept of fuzzy probability.
This paper focuses on the randomness and fuzziness

characteristics of risk analysis in the WRS. The stochastic
methods are applied to the evaluation indices and
optimization models with stochastic characteristics, while
the fuzzy methods are used for the evaluation indices and
optimization models with fuzzy performance. The applica-
tions of the stochastic and fuzzy methods as well as mixed
methods are discussed below.

3.1 Stochastic methods

The significant characteristic of a stochastic method is to
reflect the probability of risk events, quantifying them as
the probability distribution or cumulative probability
function, which can be obtained by empirical estimation
or theoretical simulation. The uncertainty variables can be
defined as certain common and typical probability
distributions, but it is a great challenge to integrate the
probability density function directly. It is difficult to
estimate and determine the distribution parameters accu-
rately and less likely to focus on the interrelationship
among variables. However, the Monte Carlo stochastic
simulation is a common method to solve this problem.
Especially, with the rapid development of computer
science, it is easy to simulate the actual situation and to
reveal the principles of the system by generating a large
number of random numbers.
For example, the Monte Carlo stochastic simulation

method has been used to generate 10000 sets of risk factors
to solve the multi-objective risk analysis model of water
resources optimization allocation, and the fundamental
target of sustainable utilization of water resources was
realized[57,58]. The Bayesian principle[59,60], the maximum

Table 2 The risk optimization models of the WRS

Optimization models Objective functions Constraints References

The expected risk value model minE½f ðx;ξÞ� E½gjðx;ξÞ�£0 [38–42]

The conditional value at risk model minfαðx;ξÞ gjðx;ξÞ£0 [43–45]

The chance-constrained risk model min f ðx;ξÞ Prff ðx;ξÞ£f g³α

Prfgjðx;ξÞ£f g³β

(
[46–49]

The minimizing probability of risk event model minPrfhkðx;ξÞg gjðx;ξÞ£0 –

The multi-objective optimization model min ½f1ðx;ξÞ,f2ðx;ξÞ,:::,fmðx;ξÞ� gjðx;ξÞ£0 [50–52]

Note: E½� � �� denotes the expected value operator; the vector x represents the decision variables; the vector ξ is composed by the uncertain risk variables; f ðx;ξÞ indicates
the objective function of the system losses risk; gjðx;ξÞ expresses the constrained function of risk, j ¼ 1,2,:::,p represents the number of constraints; fαðx;ξÞ is the loss
value of α-CVaR (conditional value at risk) under confidence level α; α and β are predefined confidence levels, representing the violation probabilities of the objective
functions and the constraints, respectively; Prf� � �g denotes the probability of risk event f� � �g under uncertainty; k ¼ 1,2,:::,q represents the number of risk events
hkðx;ξÞ£0.
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entropy principle[61–63] and Markov chain[64,65] can also be
introduced into the study framework to solve the stochastic
features of risk analysis in the WRS. The Bayesian method
has been used to analyze atmosphere-ocean global
circulation models under uncertainty, and further analyze
the water demand-consumption risk by Monte Carlo
stochastic simulation[59]. Since by using the Bayesian
method it is difficult to get a post-distribution, the Markov
chain Monte Carlo method has obvious continuity
advantages in describing the rainfall-runoff relation-
ship[65].
Although the principle of the Monte Carlo method is

simple, the simulation results depend on the sample size
and number, and the hypothesis of the basic variables is
pretty sensitive. Moreover, the calculation workload is
heavy and time-consuming. Therefore, another advanced
and convenient method can be chosen for indirect
estimation to improve the computational efficiency of the
traditional Monte Carlo simulation, such as advanced first
order second moment[66,67], stratified sampling[68], Latin
hypercube sampling[69] or an artificial neural network[70].

3.2 Fuzzy methods

Risk is relative, without clear attribute, definition or
obvious boundaries (e.g., difficult to use deterministic
value), which is a typical conception of fuzzy sets. The
problem can be described by fuzzy theory, especially when
the probability distribution is unknown and the sample size
is pretty small.
On the one hand, according to fuzzy mathematics, risk

evaluation indices can be divided into several levels, and
thus a comprehensive risk evaluation of the WRS is
performed. Compared with the single risk index, men-
tioned above, sub-criteria (Table 2) can determine the risk
of the WRS more completely, so as to provide decision-
making support for water resources planning and manage-
ment. The risk level of the evaluation indices can be
classified as very-low, low, medium, high and very-high. If
the weight of each index is determined by an analytic
hierarchy process, the subjective factor of the human may
cause deviation of the evaluation results[9]. Furthermore,
the researchers could use support vector machine[55] and
entropy theory[56] to determine weights on the basis of
mathematical theory. By incorporating objective weights
with subjective weights, the comprehensive weights can be
determined. The results generated by this approach are
objective, more reasonable and reliable.
When triangular fuzzy numbers[71] and generalized

trapezoidal fuzzy numbers[72] are taken as the study
objects, both of them measure the similarities of fuzzy sets
for fuzzy risk analysis. When multiple subcomponents in
the fuzzy risk system are expressed as fuzzy linguistic
terms (e.g., each risk level corresponding to a fuzzy
number), the total risk fuzzy numbers are obtained by the

operation of fuzzy arithmetic. Finally, the similarity
between total risk fuzzy numbers and each subcomponent
is measured, and the total risk level is obtained.
On the other hand, certain fuzzy variables can be

considered as the inputs to an optimization model, and the
similar symbols (³

~
and £

~
) appeared in the constraints,

which are used to express the fuzzy relationship[73]. For
example, the interval membership function could be
employed to describe the discreteness of different
scenarios of inflows and the ambiguity of upper and
lower boundaries[74]. By incorporating fuzzy numbers with
the chance constrained programming, the capacity expan-
sion problems coping with floods can be described[47].
In general, fuzzy sets theory can be applied widely. It is

possible to provide an alternative in the case where a
random distribution of variable is difficult to obtain.
Compared with the stochastic methods, fuzzy methods
have relatively prominent subjectivity, which can some-
times be considered as a major flaw.

3.3 Mixed methods

Based on the original single uncertainty method, the
stochastic, fuzzy (including gray and interval) methods can
be combined into a multiple uncertainties framework. In
the absence of available statistical data and a proper
physical model, fuzzy probability is used to depict and
evaluate damages caused by floods, tornadoes, earthquakes
and other natural disasters[75]. Similarly, the characteristics
of stochastic and fuzzy methods could be taken into
account, to describe fuzziness and random risk probability
distribution of the WRS by the membership function and
logistic regression[18]. Based on a similar conception, a
two-stage integer programming model, infinite two-stage
stochastic programming model and interval stochastic
fuzzy programming have been proposed for flood manage-
ment, agricultural water management and water resources
carrying capacity risk assessment[76–78].
The predominant advantage of the mixed methods is to

accurately reflect the actual characteristics of risk assess-
ment in the WRS. With the support of existing data, the
various parameters/variables can be expressed in the form
of random variables or discrete interval/fuzzy sets,
reflecting multiple uncertainties in the WRS, expressing
complex variables inside the system and their relation-
ships. The workload of processing data will increase
considerably, however, and the mathematical model used
for processing variables and its coupled relationship will
be more complicated.
Mathematical analysis methods of risk assessment for

the WRS are still developing rapidly, such as robust risk
analysis method[79], the chaotic method, genetic algo-
rithm[80,81], wavelet analysis, and the geographic informa-
tion system.
For practical problems, appropriate analysis methods
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should be selected based on the specific assessment
objectives, available information and data, the study
subject and the results of requirements. A brief review of
the above three risk analysis methods shows their
applicable conditions as well as their advantages and
disadvantages (Table 3) and this is intended to provide
decision support for researchers and policy makers in the
WRS.

4 Conclusions and perspectives

Research on risk analysis methods in theWRS described in
this paper can be summarized into three aspects: the
inherent stochastic uncertainty and cognitive subjective
uncertainty of the WRS from the objective and subjective
perspectives are discussed; three criteria including six sub-
criteria and five basic optimization models are introduced
to quantify the risk; and various methods of risk analysis
under uncertainty are summarized including random, fuzzy
and mixed methods. By analyzing the conditions for their
application, and the advantages and disadvantages of the
application of the three mentioned methods, a more
comprehensive risk analysis methodology for the WRS is
proposed. This paper is intended to provide decision
support for researchers, policy makers and stakeholders of
the WRS.
However, the risk events have become increasingly

complex since the beginning of the 21st century. Therefore
it is argued that improvements in the future can be made in
two directions.
(1) Risk evaluation is required to be increasingly

complex to cope with the temporal and spatial variation
of adverse events. Apart from a warmer global climate,

population, economic activity, vegetation cover, land use
and rising sea level will be the mainly drivers of change.
Reservoir construction, pollution, irrigation and other
water utilization will have a strong impact on the security
of the WRS. Additionally, transfer of water rights for
agriculture and urban and environmental water demand or
supply will have a great influence on the risk assessment.
This can be further explored from the perspective of a
market economy.
(2) Risk analysis methods need to be more sophisticated

to cope with the complexity of the WRS. Considering the
scope of risk study in the WRS is expanding gradually,
more comprehensive evaluation indices, advanced optimi-
zation models and uncertainty methods of risk analysis will
be further developed. In particular, economic and social
implications are often regarded as dominant factors for the
existing indices and models, without considering the effect
of the ecological environment. Quantification of ecological
effects is difficult to achieve, however, with the imple-
mentation of regional ecological protection, ecological
factors are bound to become a focus for future risk analysis
in the WRS. In addition, the risk management issues (e.g.,
the analysis of feasible choice, balance the costs and risk
benefits relationships, and the impact of the final decision)
also deserve future discussion.
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Table 3 Comparison among the three methods of risk analysis in the WRS

Methods Features Applicable conditions
An overview of the application

Advantages Disadvantages

Stochastic 1. Sensitivity to hypothesis,
depending on sample size
and the number of sample

1. The number of samples
is relatively sufficient

1. The description of the
“probability” of risk is
more realistic

1. The gap between the assumption
and the practice

2. High precision, sufficient
results

2. Probability distribution
can be obtained by an
empirical or theoretical
estimation

2. Mature development 2. Heavy workload and complex
computation

Fuzzy Describing the probability
distribution is unknown and
the sample size is pretty small

1. Data are relatively
insufficient

1. Subjective evaluation
can be involved

1. The membership function
construction is inconsistent
standard yet

2. Focus on the magnitude
of the risk of relativity

2. Widely used in the risk
evaluation indices

2. The principles of selecting
the indices are inconsistent

Mixed Combination of the above
two methods

Describing fuzziness and
risk random probability
distribution

Accurately reflect the actual
characteristics of risk
assessment in the WRS

1. The workload of processing
data will increase worrisomely

2. The mathematical model used
for processing variables and its
coupling relationship will be
more complicated
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