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Abstract Oocytes are unique cells with the inherent
capability to reprogram nuclei. The reprogramming of the
somatic nucleus from its original cellular state to a
totipotent state is essential for term development after
somatic cell nuclear transfer. The nuclear-associated
factors contained within oocytes are critical for normal
fertilization by sperm or for somatic cell nuclear
reprogramming. The chromatin of somatic nuclei can be
reprogrammed by factors in the egg cytoplasm whose
natural function is to reprogram sperm chromatin. The
oocyte first obtains its reprogramming capability in the
early fetal follicle, and then its capacity is enriched in the
late growth phase and reaches its highest capability for
reprogramming as fully-grown germinal vesicle oocytes.
The cytoplasmic milieu most likely contains all of the
specific transcription and/or reprogramming factors neces-
sary for cellular reprogramming. Certain transcription
factors in the cytoplast may be critical as has been
demonstrated for induced pluripotent stem cells. The
maternal pronucleus exerts a predominant, transcription-
dependent effect on embryo cytofragmentation, with a
lesser effect imposed by the ooplasm and the paternal
pronucleus. With deep analysis of transcriptomics in
oocytes and early developmental stage embryos more
maternal transcription factors inducing cellular reprogram-
ming will be identified.
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1 Introduction

Fetal genesis is a unidirectional process that is accom-

panied by a loss of developmental potential of various cell
lineages. Starting as a unicellular zygote, the progression
of changes ends in the formation of 220 specialized cell
types and a living organism [1]. Specific terms such as
unipotency, pluripotency, multipotency and totipotency
have been ascribed to specific populations of cells that
arise during development [1–3]. Epigenetic signatures
have been identified with these cell populations and
correlated with differentiation potentials [4].
The nucleus of differentiated cells can revert to a less

differentiated state by a process known as nuclear
reprogramming [5]. Briggs, King [6] and Gurdon [7]
demonstrated in an amphibian model during the 1950s and
1960s that genomes of adult cells, or terminally differ-
entiated cells, can generate viable cloned animals upon
nuclear transfer (NT) [2,3]. The birth of Dolly in 1997, the
first cloned mammal [8], and other animal species to
follow, indicates that differentiated cells, even those
terminally differentiated, can revert to their original
nuclear state (the zygotic state) and support term develop-
ment of a live birth [9].
Although many cloned animal species have produced

normal offspring, the somatic cell nuclear transfer (SCNT)
efficiency is still extremely low ranging from 1% to 5% of
live births [10,11]. The fact that somatic cells do not fully
support pseudo-zygote (nuclear transfer embryos) devel-
opment suggests that nuclear reprogramming is incomplete
and that the donor cell nucleus does not fully revert to a
pluripotent state. Although the causes are poorly under-
stood, any reprogramming errors are most likely to be
caused by genetic and epigenetic insufficiencies. The more
that is learned about nuclear reprogramming, the more
apparent is its complexity and the potential for as yet
unknown factors. This review highlights the current state-
of-the-art of somatic cellular reprogramming used in
animal cloning, and discusses various nuclear-associated
and transcription factors.
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2 Nuclear reprogramming begins from
oogenesis

The vertebrate egg is the only known animal cell that can
be reprogrammed with a somatic cell nucleus and under-
goes embryonic development [12]. At birth, a mouse ovary
contains clusters with thousands of oocytes. The vast
majority of the oocytes have already entered meiosis. At,
or around the time of birth, some of the oocytes will have
entered the transitory stages of prophase (pachytene, early
and late diplotene and dictyate) where they remain until
meiosis resumes just before ovulation [13]. At the
transition of primordial follicles to primary follicles on
the third postnatal day in mice, the surrounding granulosa
cells revert to a squamous to cuboidal shape with the
diameter of the oocyte increasing to more than 20 μm.
Numerous oocyte-specific genes that are critical for
folliculogenesis and embryogenesis are initiated during
the transition of the primordial follicle to primary follicle
[14].
The follicular growth phase of the murine oocyte

undergoes a considerable increase in diameter from less
than 20 μm in the primordial follicle to more than 70 μm in
the antral follicle. Transcription factors occurring during
folliculogenesis have been shown to maintain critical roles
in accumulating transcripts required for follicular growth
(e.g., Bmp15 and Gdf9) and from fertilization to
embryonic development (e.g., Mater and Zar1) [12].
Oocyte growth, even during the final stages of the

growth phase, is critical for full developmental compe-
tence. This is a time when the development-associated
materials accumulate. The nucleus of the oocyte becomes a
large storage organelle (germinal vesicle, GV) containing
histones, lamins, pore complexes, transcriptional factors
and various small ribosomal nuclear proteins [15]. The
cytoplasm of the oocyte drastically increases recruiting and
accumulating the maternal origin contents such as certain
meiosis-associated cell signals, mRNAs, nucleoplasms,
proteins and rRNAs.
Oocytes that approach full size are then competent to

complete maturation, which are about 75 μm in mice [16]
and 130 μm in bovine [17]. Smaller oocytes will not
support meiosis [18] and fail to induce the sperm nuclei to
form pronuclei [15]. However, when smaller oocytes were
fused to mitotically competent oocytes they underwent
maturation, which strongly supports the suggestion that
reprogramming modifications and the acquisition of
epigenetic changes necessary for oocyte meiosis occur at
a late in the oocyte growth phase [19].
Maternal epigenetic modifications can also occur during

oogenesis [20]. It has been shown that the maternal
genome gradually achieved developmental competence
beginning at about 50 μm diameter in mouse [21]. In adult
ovary the epigenetic modifications of maternal chromatin
necessary for development to term appear to be established

earlier in the oocyte growth phase. At this phase and during
the maturation phase, oocytes have the capacity to
extensively reprogram heterologous chromatin [22].
Gonadotropin hormone stimulated oocytes at GV stage

complete meiosis by disassembling the nuclear membrane,
undergoing chromatin condensation, assembling the meta-
phase spindle, completing the first meiotic division and
ending at the second metaphase stage (MII). During
meiotic resumption, nuclear membrane-associated com-
pounds and nuclear matrix factors diffuse into the ooplasm.
These compounds reassemble as the pronucleus forms at
fertilization. During nuclear envelope breakdown (NEBD),
the disassembling of the endoplasmic reticulum generates
vesicular components for pronuclear development [15,23].
The fully developed GV contains essential materials and
factors for the reassembly of the nuclear membrane and
expedites chromatin decondensation and recondensation in
sperm [15]. Oocyte specific transcription factors have been
shown most likely to provide the switches directing the
meiotic processes [24].

3 Germinal vesicle breakdown materials
are needed for cellular reprogramming

During and after GV breakdown (GVBD) its contents are
dispersed throughout the cytoplasm of maturing oocytes.
The distributed nuclear materials are necessary for sperm
chromatin decondensation and cleavage in fertilized eggs
[23]. Nucleoplasmin removes sperm protamines and
decondenses the sperm chromatin to allow for the
assembly of the paternal pronucleus [25]. Iwashita et al.
[26] performed a series of nucleocytoplasm mixing and
enucleation experiments and observed that the GV
contains a factor or factors that seemingly contribute(s)
to the initial maturation-promoting factor (MPF) activation
during meiosis I. Some nuclear factors were absolutely
necessary for MPF reactivation and entry into meiosis II.
Aside from the importance of MPF, mitogen-activated
protein kinase (MAPK) also seemed to contribute to the
regulation of meiotic maturation in the mammalian oocytes
[27,28].
Given the various findings presented above, the general

view that meiotic control in the vertebrate oocytes depends
solely on cytoplasmic factors may need to be reconsidered
[26]. In Xenopus, Gurdon et al. ruptured the GV by a
needle to promote the mixing of GV contents with the
oocyte cytoplast prior to nuclear transfer and significantly
increased the efficiency of nuclear reprogramming [29].
The transfer of mouse somatic cells into GV oocytes
confirmed that GV material was essential for nuclear
reprogramming [30]. Nuclear components extracted from
the GVs have been demonstrated to be important in
facilitating reprogramming of the introduced foreign nuclei
in mammals [31]. Polanski et al. showed that GV
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components released into the cytoplasm of an oocyte after
GVBD appear to be incorporated into the growing
pronuclei [32]. These findings suggest that exchanges of
materials between nuclear and cytoplast compartments
play important roles during oocyte growth, maturation and
embryonic mitosis. It was confirmed that the putative
regulating factors were crucial for embryonic development
[33,34]. Such factors may be localized to the pronuclei
during interphase, which are partially or completely
removed during the enucleation and subsequent nuclear
transfer process. The nature of these various nuclear
components still needs to be resolved. If animal cloning is
to become a practical tool in the arsenal of assisted
reproduction technologies, then the identification of such
factors is essential for understanding the mechanism of
meiotic control and the processes involved in somatic cell
reprogramming.
Enucleated GV stage oocytes as recipient cytoplasts for

somatic cell nuclear transfer failed to produce term
pregnancies. When somatic cells were transferred into
rabbit enucleated GV stage oocytes, the donor nuclei
remained condensed or fragmented and did not form
pronuclei (unpublished data). The results imply that GV
stage cytoplasts are incompetent to support cloned embryo
development. An earlier study by Mohammed et al. also
concluded that GV stage oocytes were unsuitable as
recipients for nuclear transfer [30]. It is thought that the
reprogramming factor(s) responsible for embryonic stem
cells reside in the nucleus [35,36]. To determine if the
genomic reprogramming factors reside in the nucleus or
cytoplasm of GV stage oocytes, and whether they can
reprogram somatic cell nuclei, Bui et al. treated differ-
entiated adult somatic cells with lysates of GV stage oocyte
cytoplasm and successfully produced cloned mice [37].
The cloning efficiency was significantly increased from
about 0.6% to 3.1%, which supports the hypothesis that
genomic reprogramming factors are present in the
cytoplasm of the GV stage oocyte and therefore can
improve cloning technology [37]. The results of the study
also suggested that GV stage oocytes are rich in materials
necessary for nuclear reprogramming and embryo devel-
opment, and the deletion of these factors, results in
impaired nuclear programming and developmental failure
of in vitro fertilized or nuclear reconstructed embryos/
fetuses.
More recently, Wang et al. using semiquantitative mass

spectrometry (MS) analysis confirmed that protein com-
positions were correlated with various oocyte develop-
mental stages [38].

4 Zygote cytoplasts as recipients for
somatic cell nuclear transfer

Modliński micro-surgically introduced mouse CBA/H
T6T6 strain 8-cell stage nuclei into intact zygotes and

identified the presence of two T6 marker chromosomes in
resulting tetraploid blastocysts [39]. McGrath and Solter
reported in their study the inability of mouse blastomere
nuclei transferred into enucleated zygotes to support in
vitro development [40]. Upon analyzing causes leading to
failure of development of reconstituted zygotes, in which
karyoplasts containing intact pronuclei were removed,
Greda et al. stated that the failure might have been caused
by the enucleation protocol [33]. It is known that the
nucleolus in the zygote and early embryo is maternally
inherited and originates from material sources that are
present in the oocyte GV [41]. The nucleoli originating
from a somatic cell or even from an embryonic stem cell
cannot substitute for the original oocyte nucleolar material
[41]. These studies suggest that zygote nuclear factors are
critically important for the development of cloned embryos
with zygote cytoplasts as recipients.

5 Second metaphase stage cytoplasts as
recipients

To date almost all animals cloned from somatic cell nuclei
have been produced using enucleated MII stage oocytes as
recipient cytoplasts [33]. The MII stage oocyte creates a
better environment for SCNT than either the GV or
metaphase I stage oocytes [30,42,43].
As discussed above, GV materials diffuse and become

distributed throughout the cytoplasm. Intensive mixing
occurs during GVBD and when oocytes enter first and
second meiosis. MII cytoplasts amass the entire nuclear
reprogramming machinery and embryo development
associated factors that are necessary to support early
embryo development after fertilization or nuclear transfer.
The active forms of MPF and MAPK in MII oocytes are

maintained at high levels and induce NEBD, which then
disperses the nucleoli and causes premature chromosome
condensation (PCC) in transferred somatic cell nuclei.
Nuclear reprogramming will not occur without MFP and
MAPK [44,45]. PCC most likely facilitates the formation
of nuclear swelling. Enlargement of the nucleus has been
correlated with successful nuclear reprogramming [46,47].
In contrast to GV stage and maturing oocytes, MII oocytes
promote PCC and nuclear swelling of introduced nuclei,
which provides a more suitable environment for nuclear
reprogramming.
As previously mentioned, the prevailing problem with

SCNT is the extremely low efficiency with only 1% to 5%
of transferred embryos developing to term. Whether
demethylation and remethylation are essential for devel-
opment varies among studies in mice [48–50] and cattle
[51–55]. Histone acetylation has been shown to be aberrant
in bovine embryos made by NT [55,56]. Incomplete
epigenetic reprogramming is the predominant cause of
aberrant gene expression that contributes to the high
incidence of pregnancy failure [57].
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Higher efficiency cloning will require a greater under-
standing of the events involved in reprogramming by NT.
Attempts are currently underway to improve the efficiency
of NT by manipulating the donor cell prior to NT, which
include treating cells with DNA methyltransferase inhibi-
tors or histone deacetylase inhibitors [56,58,59]. The
preimplantation embryo made by NTcould be manipulated
to reduce the DNA methylation level and increase the
histone acetylation level. The transfer success of these
epigenetically manipulated embryos has not been investi-
gated. The reprogramming process of donor cell has been
shown to be initiated by the recipient cytoplast and the
cytoplast has a greater impact on NT than the donor cell
[58]. In early stage bovine embryos, rRNAs are not
transcribed until the 4-cell stage. Abundant nuclear
transcriptional activity first occurs at the 8- to 16-cell
stage [60]. Maternal transcripts and oocyte proteins are
essential for embryogenic progression [58].
Enucleation is one of the key steps of nuclear transfer

cloning and is accomplished by removing the MII spindle
and a small volume of surrounding cytoplasm from the
matured oocyte [43]. A problem associated with the
procedure is that incomplete enucleation results in
aneuploidy. This then leads to genetic interference within
the recipient cytoplasm and abnormal development [61].
The removal of genetic content from the recipient
cyotoplast also tends to delete factors that are important
for nuclear reprogramming.
Using non-enucleated oocytes as nuclear recipients it

was found that donor cell PCC occurred more readily in the
intact oocyte compared to that in an enucleated one [62]. In
the presence of oocyte nuclei, the transferred cell nuclei
underwent NEBD and entered pre-metaphase I stage 5
times faster than the enucleated group. This phenomenon
was also observed in mice by using an intact oocyte as the
recipient cytoplast [63]. To verify oocyte nucleus cap-
ability for cell reprogramming, a reverse nuclear transfer
(RNT) procedure was performed. The cell was first fused
to an intact oocyte. After a short interaction between
oocyte and somatic nuclei, the oocyte nucleus was then
removed. The transferred nucleus was swollen, deployed
and reorganized to form a pronuclear-like structure, which
occurred faster than in the control group. The in vitro
development capacity of embryos produced by RNT was
significantly higher than the control group. From compar-
ison of these results with similar studies [45], it is
suggested that oocyte MII chromosomes can initiate PCC
in the donor cell nuclei and the chromosomes of the oocyte
maintain MPF at high levels. It is known that high levels of
MPF contribute to the formation of PCC in the donor cell
[64,65].In the enucleation process, much of the MPF was
removed. The effect of MPF in the cytoplast was therefore
much less than in the intact oocyte [45]. The reduced level
of MPF in the enucleated cytoplast, however, still affects
PCC, although at a slower rate [64].

Studies using extracts from GV stage oocytes or MII-
oocytes have shown that oocytes at different stages had
distinctive and unique mechanisms for somatic cell
reprogramming, which differed from reprogramming
techniques used to produce induced pluripotent stem
cells with defined transcription factors [66–68]. It has
been shown that treatment with MII extract could induce at
least partial reprogramming in somatic cells [69]. The fact
that MII extract is beneficial for somatic cell nuclear
reprogramming may eventually lead to the identification of
specific reprogramming factors in oocytes. However, using
GV-extract treatment to promote somatic cell nuclear
reprogramming may not lead to the identification of the
various reprogramming factors, because the GV and
cytoplasm components become artificially mixed [3].

6 Oocyte maternal nuclear material
controls embryo quality

Embryo quality and developmental competence are
associated with oocyte maturation [70–72]. Mammalian
embryos are destined to die unless crucial early develop-
mental events take place to suppress cellular death. When
suppression is inadequate, apoptotic-like events occur in
the early embryo including cytoplasmic fragmentation or
blebbing (cytofragmentation), DNA fragmentation, and
other changes commonly associated with apoptosis [73]. In
humans, cytofragmentation often occurs at the 6- to 8-cell
stages, immediately before or at the time of genome
activation [74]. Cytofragmentation events in mice occur as
early as the mid 2-cell stage, which is just before the major
genome activation event [75,76]. Studies of cytofragmen-
tation in mouse embryos indicated that the maternal
pronucleus exerted a predominant, transcription-dependent
effect on the phenotype, with lesser effects from the
ooplasm and paternal pronucleus [75–77]. The parental
origin effect is the result of a transgenerational epigenetic
modification, whereby the inherited maternal grandpater-
nal contribution interacts with the fertilizing paternal
genome and the ooplasm. Some epigenetic information
related to grandparental origins of chromosomes is
retained through oogenesis and transmitted to progeny,
where it affects gene expression from the maternal
pronucleus and subsequent embryo phenotype [77,78].

7 Localization and distribution of
transcriptional factors in oocytes

The mammalian oocyte has a maternal gene expression
profile that is unique. In mice, transcription arrest occurs
at GV stage and is maintained until zygotic genome
activation takes place approximately 9–10 h after fertiliza-
tion [79–81]. Between cessation and resumption of
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transcription, the maternal transcription profile is repro-
grammed to that observed in the embryos [82,83]. The
mechanisms underlying transcription-reprogramming still
warrant further investigation. A clearer understanding of
the molecular mechanisms responsible for the reprogram-
ming process will undoubtedly lead to a higher efficiency
in cloning technology [84,85].
Three hypotheses have been proposed to explain

transcription silencing during embryogenesis: (1) tran-
scription before the mid-blastula transition is prevented by
rapid cell cycling as shown in Xenopus during early
development; (2) the presence of inhibitory factors in eggs
represses transcription; and (3) a deficiency in, or absence
of, critical transcriptional factors leads to transcriptional
silencing [82,83]. It has been reported in mice that dynamic
changes in transcriptional activity occurred when a non-
surrounding nucleolus changes to a surrounding nucleolus
configuration [86,87]. In non-surrounding nuclei, tran-
scription was active with the presence of eight general
transcription factors (TFs), BRF1, PolII, TAF1, TAF4,
TBP, TFIIA, TFIIB, and TRF3. The transcriptional
machinery was still functional at this stage and was present
with the chromatin. The preliminary data (authors’
unpublished data) showed that chromatin factors,
HDAC1, HDAC2, HP1, HP1®, TAFIIP250, TFIIB and
Topo II, were associated with the DNA template during
chromatin condensation in mice and bovine. At GVBD,
these factors gradually dissociated from the chromatin and
then attached to the spindle during meiotic processing.
Several transcription factors such as BAF155, Brg-1,
TFIID and Topo II® were dispersed throughout the
nucleoplasm. This group of factors did not co-locate with
the chromatin even though the chromatin condenses. They
could only be detected in the cytoplasm after GVBD
(authors’ unpublished data). These data suggested that
most general transcription molecules dissociated from
chromatin and dispersed before the oocyte reached
metaphase I stage. When oocytes advanced to meiosis
MII, part of the TFs were shunted to the polar body while
most retained their original distribution pattern.
The first event in the development of any vertebrate

embryo is under maternal control until the zygotic genome
becomes activated. Transcription starts at the 1-cell stage
in mice and significantly increases by the 2-cell stage [88].
Once the pronuclear state is formed, DNA replication and
transcription begins. TFs are synchronously synthesized
and/or recovered and become re-associated with the
chromatin. The zygotic genome then becomes activated
and directs early embryogenesis.
Nuclear swelling, chromatin dispersal, and protein

exchange between a transplanted nucleus and oocyte
cytoplasm were essential for embryo development and
reprogramming of the SCNT embryo [83]. The reprogram-
ming of transplanted somatic nuclei retraced events similar
to normal early development [83,89]. TFs were critical for

transcription activation and regulation in the mouse [83].
TFs exhibited a characteristic pattern of dissociation from
somatic cell nuclei, followed by a duplication process in
the maternal chromatin. TFs became re-associated with the
chromatin/pronuclei in SCNTand parthenogenesis, similar
to normal fertilized embryos. Gao et al. concluded that
somatic cell reprogramming had two phases: in the first, a
broad range of TFs moved out of the somatic nucleus soon
after nuclear transfer [83], and the second occurred shortly
after pronuclear formation with nearly all of the TFs being
reloaded back to chromatin.
TFs were observed to display a global pattern of

dissociation and re-association from chromatin. The
process of dissociation and re-association occurred in
tandem with other reprogramming mechanisms such as
DNA demethylation [9] and histone deacetylation [90].
The combination of these molecular processes reset the
somatic cell nuclei to that of the normal embryonic state.
Most TFs were reloaded back to nuclei shortly after
pronuclear formation. Similar timing and dynamic changes
were present for normal developed, SCNT and partheno-
genesis embryos. Eggs produced by these methods seemed
to follow the same pathway of development regardless
of how they were created. Zygotic development is a
process independent of the way eggs are produced [83].
The general nature of the development is determined by the
egg rather than the chromatin. This becomes more apparent
with parthenogenotes where the normal path for develop-
mental is initiated and retraced without any addition(s) to
the egg, e.g., sperm or somatic nucleus. The egg alone
appears to contain most, if not all, the essential components
for directing zygotic developmental and transcription
[82,83]. Inoue et al. reported that deletion of Xist, a non-
coding RNA that inactivated one of the two X chromo-
somes in females on Xa, resulted in an 8- to 9-fold increase
in cloning efficiency accompanied with normal global gene
expression [91]. Therefore, it is concluded that nonrandom
reprogramming errors could be corrected to a point where
SCNT will eventually become an economically viable
procedure. Results from this study reinforce the basic
premise that transcription factors play a critical role in
nuclear reprogramming.

8 Transcriptomics may dissect the detailed
gene regulatory mechanisms in cellular
reprogramming

The most advanced single-cell sequencing technique
makes it possible to dissect the detail of genetic regulatory
mechanisms in a valuable resource, e.g., progressively
developmental embryo. The transcriptome analysis of the
different developmental stages from oocyte to morula in
both mouse and human reveal a sequential order of
transcriptional changes in pathways of cell cycle, gene
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regulation, translation and metabolism, acting in a step-
wise fashion from cleavage to morula [92]. In cattle, RNA
sequencing analysis of transcripts in GVand M II oocytes,
and in 4-, 8-, 16-cell and blastocyst stage embryos
indicated that the largest proportion of gene activation
was found in 8-cell embryos [93]. Cross-species compar-
isons between mouse and human showed that significant
difference in developmental specificity and timing existed
[92]. It has been reported that the maternal glucocorticoid
receptor transcript and protein participated in the maternal
reprogramming of zebrafish development [94]. Ces5/Ooep
was suggested to be a maternal-effect gene directly
associated with the oocyte cytoplasmic developmental
patterns [95]. Transcription factor gene MSX1 played
important roles in bovine preimplantation embryo devel-
opment. Injection of long double-stranded RNA and small
interfering RNA to oocytes at GV stage reduced MSX1
mRNA expression, which significantly affected oocyte
maturation and the subsequent embryo development [96].
In Xenopus, the conserved long non-coding RNAs were
expressed in a developmental stage-specific fashion [97]. It
has been demonstrated that miRNAs played regulatory
roles during early embryo development [98]. The Gli-like
transcription factor Glis1 was enriched in unfertilized
oocytes and embryos at the 1-cell stage. Glis1 was
observed to promote multiple pro-reprogramming path-
ways, including Myc, Nanog, Lin28, Wnt, Essrb and the
mesenchymal-epithelial transition [99]. Glis1, as a mater-

nal transcription factor effectively promoted the direct
reprogramming of somatic cells during iPSC generation
[99]. With deep analysis of transcriptomics in oocytes and
early developmental stage embryos, more maternal
transcription factors inducing cellular reprogramming
will be identified. Figure 1 illustrates the possible roles
of transcriptional factors in oocyte maturation, fertilization,
nuclear transfer reprogramming and embryo development.

9 Concluding remarks

Oocytes are special cells and have the inherent capability
to reprogram nuclei. The ability to reprogram somatic cell
nuclei is a critical step for deriving pluripotent stem cells
from a differentiated cell. The reprogramming of the
somatic nucleus from its original cellular state to a
totipotent state is essential for term development after
SCNT [100]. The nuclear-associated factors contained
within oocytes are critical for normal fertilization by sperm
or for somatic cell nuclear reprogramming. The chromatin
of somatic nuclei can be reprogrammed by factors in the
egg cytoplasm whose natural function is to reprogram
sperm chromatin [66]. Oocyte cytoplast and nuclear
materials jointly contribute to embryo development both
from fertilization and SCNT. Incomplete reprogramming
of a transferred somatic cell may be primarily due to
insufficient amounts of reprogramming factors in the host

Fig. 1 The possible roles of transcription factors in oocyte maturation, fertilization, nuclear transfer and embryo development
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cytoplast. Transcriptomics analyses of oocytes and early
developmental stage embryos will identify more maternal
transcription factors involved in inducing cellular repro-
gramming.
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