Please wait a minute...

Frontiers of Agricultural Science and Engineering

Front. Agr. Sci. Eng.    2020, Vol. 7 Issue (2) : 218-226     https://doi.org/10.15302/J-FASE-2020324
REVIEW
Interspecies transmission and evolution of the emerging coronaviruses: perspectives from bat physiology and protein spatial structure
Baicheng HUANG1, Kegong TIAN1,2()
1. National Research Center for Veterinary Medicine, Luoyang 471003, China
2. College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
Download: PDF(614 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Emergent coronaviruses (CoVs) such as SARS-CoV and MERS-CoV have posed great threats to public health worldwide over the past two decades. Currently, the emergence of SARS-CoV-2 as a pandemic causes greater public health concern. CoV diversity is due to the large size and replication mechanisms of the genomes together with having bats as their optimum natural hosts. The ecological behavior and unique immune characteristics of bats are optimal for the homologous recombination of CoVs. The relationship of spatial structural characteristics of the spike protein, a protein that is critical for recognition by host receptors, in different CoVs may provide evidence in explaining the coevolution of CoVs and their hosts. This information may help to enhance our understanding of CoV evolution and thus provide part of the basis of preparations for any future outbreaks.

Keywords bat      coronavirus      evolution      host receptor      spike protein      transmission     
Corresponding Authors: Kegong TIAN   
Just Accepted Date: 24 March 2020   Online First Date: 14 April 2020    Issue Date: 28 April 2020
 Cite this article:   
Baicheng HUANG,Kegong TIAN. Interspecies transmission and evolution of the emerging coronaviruses: perspectives from bat physiology and protein spatial structure[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 218-226.
 URL:  
http://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2020324
http://journal.hep.com.cn/fase/EN/Y2020/V7/I2/218
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Baicheng HUANG
Kegong TIAN
Fig.1  The available PDB data on CoVs in RCSB. The other CoVs include 229E, NL63, OC43, PEDV, PRCV, TGEV, PDCoV, IBV, FIPV, MHV, HKU1, HKU4, HKU5, HKU9, Bov-CoV, and rat CoV; the other NSP include NSP1, NSP3, NSP4, NSP7, NSP8, NSP9, NSP10, NSP12, NSP13, NSP14, NSP15 and NSP16; the other proteins include viral proteins E (envelope protein), HE, M (membrane protein), N (nucleocapsid protein), ORF7A, ORF9b, together with the antibodies of CoVs.
Fig.2  Comparison of the spatial structure of the receptor binding domains (RBD) of CoV S protein. The PDB data are listed as: SARS-CoV-2 S (PDB: 6VSB), SARS-CoV S (PDB: 5XLR) and MERS-CoV S (PDB: 5X59).
1 S Su, G Wong, W Shi, J Liu, A C K Lai, J Zhou, W Liu, Y Bi, G F Gao. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology, 2016, 24(6): 490–502
https://doi.org/10.1016/j.tim.2016.03.003 pmid: 27012512
2 N S Zhong, B J Zheng, Y M Li, L L M Poon, Z H Xie, K H Chan, P H Li, S Y Tan, Q Chang, J P Xie, X Q Liu, J Xu, D X Li, K Y Yuen, J S M Peiris, Y Guan. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet, 2003, 362(9393): 1353–1358
https://doi.org/10.1016/S0140-6736(03)14630-2 pmid: 14585636
3 A M Zaki, S van Boheemen, T M Bestebroer, A D M E Osterhaus, R A M Fouchier. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine, 2012, 367(19): 1814–1820
https://doi.org/10.1056/NEJMoa1211721 pmid: 23075143
4 N Zhu, D Zhang, W Wang, X Li, B Yang, J Song, X Zhao, B Huang, W Shi, R Lu, P Niu, F Zhan, X Ma, D Wang, W Xu, G Wu, G F Gao, W Tan. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 2020, 382(8): 727–733
https://doi.org/10.1056/NEJMoa2001017 pmid: 31978945
5 C H Calisher, J E Childs, H E Field, K V Holmes, T Schountz. Bats: important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 2006, 19(3): 531–545
https://doi.org/10.1128/CMR.00017-06 pmid: 16847084
6 X Y Ge, J L Li, X L Yang, A A Chmura, G Zhu, J H Epstein, J K Mazet, B Hu, W Zhang, C Peng, Y J Zhang, C M Luo, B Tan, N Wang, Y Zhu, G Crameri, S Y Zhang, L F Wang, P Daszak, Z L Shi. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 2013, 503(7477): 535–538
https://doi.org/10.1038/nature12711 pmid: 24172901
7 E M Leroy, B Kumulungui, X Pourrut, P Rouquet, A Hassanin, P Yaba, A Délicat, J T Paweska, J P Gonzalez, R Swanepoel. Fruit bats as reservoirs of Ebola virus. Nature, 2005, 438(7068): 575–576
https://doi.org/10.1038/438575a pmid: 16319873
8 J S Towner, B R Amman, T K Sealy, S A R Carroll, J A Comer, A Kemp, R Swanepoel, C D Paddock, S Balinandi, M L Khristova, P B H Formenty, C G Albarino, D M Miller, Z D Reed, J T Kayiwa, J N Mills, D L Cannon, P W Greer, E Byaruhanga, E C Farnon, P Atimnedi, S Okware, E Katongole-Mbidde, R Downing, J W Tappero, S R Zaki, T G Ksiazek, S T Nichol, P E Rollin. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathogens, 2009, 5(7): e1000536
https://doi.org/10.1371/journal.ppat.1000536 pmid: 19649327
9 J Cui, F Li, Z L Shi. Origin and evolution of pathogenic coronaviruses. Nature Reviews: Microbiology, 2019, 17(3): 181–192
https://doi.org/10.1038/s41579-018-0118-9 pmid: 30531947
10 P Zhou, X L Yang, X G Wang, B Hu, L Zhang, W Zhang, H R Si, Y Zhu, B Li, C L Huang, H D Chen, J Chen, Y Luo, H Guo, R D Jiang, M Q Liu, Y Chen, X R Shen, X Wang, X S Zheng, K Zhao, Q J Chen, F Deng, L L Liu, B Yan, F X Zhan, Y Y Wang, G F Xiao, Z L Shi. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798): 270–273
https://doi.org/10.1038/s41586-020-2012-7 pmid: 32015507
11 M Hoffmann, H Kleine-Weber, S Schroeder, N Krüger, T Herrler, S Erichsen, T S Schiergens, G Herrler, N H Wu, A Nitsche, M A Müller, C Drosten, S Pöhlmann. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181: 1–10
https://doi.org/10.1016/j.cell.2020.02.052 pmid: 32142651
12 Y Caì, S Q Yú, E N Postnikova, S Mazur, J G Bernbaum, R Burk, T Zhāng, S R Radoshitzky, M A Müller, I Jordan, L Bollinger, L E Hensley, P B Jahrling, J H Kuhn. CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection. PLoS One, 2014, 9(11): e112060
https://doi.org/10.1371/journal.pone.0112060 pmid: 25409519
13 P C Y Woo, S K P Lau, C S F Lam, C C Y Lau, A K L Tsang, J H N Lau, R Bai, J L L Teng, C C C Tsang, M Wang, B J Zheng, K H Chan, K Y Yuen. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of Virology, 2012, 86(7): 3995–4008
https://doi.org/10.1128/JVI.06540-11 pmid: 22278237
14 L Wang, Y Zhang, B Byrum. Complete genome sequence of porcine coronavirus HKU15 strain IN2847 from the United States. Genome Announcements, 2014, 2(2): e00291-14
https://doi.org/10.1128/genomeA.00291-14 pmid: 24744332
15 D Cavanagh. Coronavirus avian infectious bronchitis virus. Veterinary Research, 2007, 38(2): 281–297
https://doi.org/10.1051/vetres:2006055 pmid: 17296157
16 K Erles, C Toomey, H W Brooks, J Brownlie. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology, 2003, 310(2): 216–223
https://doi.org/10.1016/S0042-6822(03)00160-0 pmid: 12781709
17 M Pensaert, E O Haelterman, T Burnstein. Transmissible gastroenteritis of swine: virus-intestinal cell interactions. I. Immunofluorescence, histopathology and virus production in the small intestine through the course of infection. Archiv fur die Gesamte Virusforschung, 1970, 31(3): 321–334
https://doi.org/10.1007/BF01253767 pmid: 4992468
18 M B Pensaert, P de Bouck. A new coronavirus-like particle associated with diarrhea in swine. Archives of Virology, 1978, 58(3): 243–247
https://doi.org/10.1007/BF01317606 pmid: 83132
19 P Zhou, H Fan, T Lan, X L Yang, W F Shi, W Zhang, Y Zhu, Y W Zhang, Q M Xie, S Mani, X S Zheng, B Li, J M Li, H Guo, G Q Pei, X P An, J W Chen, L Zhou, K J Mai, Z X Wu, D Li, D E Anderson, L B Zhang, S Y Li, Z Q Mi, T T He, F Cong, P J Guo, R Huang, Y Luo, X L Liu, J Chen, Y Huang, Q Sun, X L Zhang, Y Y Wang, S Z Xing, Y S Chen, Y Sun, J Li, P Daszak, L F Wang, Z L Shi, Y G Tong, J Y Ma. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 2018, 556(7700): 255–258
https://doi.org/10.1038/s41586-018-0010-9 pmid: 29618817
20 J C Bridger, E O Caul, S I Egglestone. Replication of an enteric bovine coronavirus in intestinal organ cultures. Archives of Virology, 1978, 57(1): 43–51
https://doi.org/10.1007/BF01315636 pmid: 655865
21 R L Sharpee, C A Mebus, E P Bass. Characterization of a calf diarrheal coronavirus. American Journal of Veterinary Research, 1976, 37(9): 1031–1041
pmid: 786086
22 N C Pedersen, J F Evermann, A J McKeirnan, R L Ott. Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683. American Journal of Veterinary Research, 1984, 45(12): 2580–2585
pmid: 6084432
23 L N Binn, E C Lazar, K P Keenan, D L Huxsoll, R H Marchwicki, A J Strano. Recovery and characterization of a coronavirus from military dogs with diarrhea. Proceedings, Annual Meeting of the United States Animal Health Association, 1974, 78(78): 359–366
pmid: 4377955
24 B A Wevers, L van der Hoek. Recently discovered human coronaviruses. Clinics in Laboratory Medicine, 2009, 29(4): 715–724
https://doi.org/10.1016/j.cll.2009.07.007 pmid: 19892230
25 C Huang, Y Wang, X Li, L Ren, J Zhao, Y Hu, L Zhang, G Fan, J Xu, X Gu, Z Cheng, T Yu, J Xia, Y Wei, W Wu, X Xie, W Yin, H Li, M Liu, Y Xiao, H Gao, L Guo, J Xie, G Wang, R Jiang, Z Gao, Q Jin, J Wang, B Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223): 497–506
https://doi.org/10.1016/S0140-6736(20)30183-5 pmid: 31986264
26 B Hu, X Ge, L F Wang, Z Shi. Bat origin of human coronaviruses. Virology Journal, 2015, 12(1): 221
https://doi.org/10.1186/s12985-015-0422-1 pmid: 26689940
27 J S M Peiris, S T Lai, L L M Poon, Y Guan, L Y C Yam, W Lim, J Nicholls, W K S Yee, W W Yan, M T Cheung, V C C Cheng, K H Chan, D N C Tsang, R W H Yung, T K Ng, K Y Yuen. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361(9366): 1319–1325
https://doi.org/10.1016/S0140-6736(03)13077-2 pmid: 12711465
28 Y Guan, B J Zheng, Y Q He, X L Liu, Z X Zhuang, C L Cheung, S W Luo, P H Li, L J Zhang, Y J Guan, K M Butt, K L Wong, K W Chan, W Lim, K F Shortridge, K Y Yuen, J S M Peiris, L L M Poon. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003, 302(5643): 276–278
https://doi.org/10.1126/science.1087139 pmid: 12958366
29 W Li, Z Shi, M Yu, W Ren, C Smith, J H Epstein, H Wang, G Crameri, Z Hu, H Zhang, J Zhang, J McEachern, H Field, P Daszak, B T Eaton, S Zhang, L F Wang. Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005, 310(5748): 676–679
https://doi.org/10.1126/science.1118391 pmid: 16195424
30 S K P Lau, P C Y Woo, K S M Li, Y Huang, H W Tsoi, B H L Wong, S S Y Wong, S Y Leung, K H Chan, K Y Yuen. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39): 14040–14045
https://doi.org/10.1073/pnas.0506735102 pmid: 16169905
31 M Yu, V Stevens, J D Berry, G Crameri, J McEachern, C Tu, Z Shi, G Liang, H Weingartl, J Cardosa, B T Eaton, L F Wang. Determination and application of immunodominant regions of SARS coronavirus spike and nucleocapsid proteins recognized by sera from different animal species. Journal of Immunological Methods, 2008, 331(1–2): 1–12
https://doi.org/10.1016/j.jim.2007.11.009 pmid: 18191140
32 N Wang, S Y Li, X L Yang, H M Huang, Y J Zhang, H Guo, C M Luo, M Miller, G Zhu, A A Chmura, E Hagan, J H Zhou, Y Z Zhang, L F Wang, P Daszak, Z L Shi. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virologica Sinica, 2018, 33(1): 104–107
https://doi.org/10.1007/s12250-018-0012-7 pmid: 29500691
33 Z A Memish, N Mishra, K J Olival, S F Fagbo, V Kapoor, J H Epstein, R Alhakeem, A Durosinloun, M Al Asmari, A Islam, A Kapoor, T Briese, P Daszak, A A Al Rabeeah, W I Lipkin. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerging Infectious Diseases, 2013, 19(11): 1819–1823
https://doi.org/10.3201/eid1911.131172 pmid: 24206838
34 E I Azhar, S A El-Kafrawy, S A Farraj, A M Hassan, M S Al-Saeed, A M Hashem, T A Madani. Evidence for camel-to-human transmission of MERS coronavirus. New England Journal of Medicine, 2014, 370(26): 2499–2505
https://doi.org/10.1056/NEJMoa1401505 pmid: 24896817
35 M A Müller, V M Corman, J Jores, B Meyer, M Younan, A Liljander, B J Bosch, E Lattwein, M Hilali, B E Musa, S Bornstein, C Drosten. MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997. Emerging Infectious Diseases, 2014, 20(12): 2093–2095
https://doi.org/10.3201/eid2012.141026 pmid: 25425139
36 A Zohaib, M Saqib, M A Athar, J Chen, A U R Sial, S Khan, Z Taj, H Sadia, U Tahir, M H Tayyab, M A Qureshi, M K Mansoor, M A Naeem, B J Hu, B A Khan, I D Ujjan, B Li, W Zhang, Y Luo, Y Zhu, C Waruhiu, I Khan, X L Yang, M S Sajid, V M Corman, B Yan, Z L Shi. Countrywide survey for MERS-coronavirus antibodies in dromedaries and humans in Pakistan. Virologica Sinica, 2018, 33(5): 410–417
https://doi.org/10.1007/s12250-018-0051-0 pmid: 30311100
37 T T Y Lam, M H H Shum, H C Zhu, Y G Tong, X B Ni, Y S Liao, W Wei, W Y M Cheung, W J Li, L F Li, T T Y Lam, M H H Shum, H C Zhu, Y G Tong, X Ni, Y S Liao, W Wei, W Y M Cheung, W J Li, L F Li, G M Leung, E C Holmes, Y L Hu, Y Guan. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv, 2020 [Preprint] doi: 10.1101/2020.02.13.945485
38 K P Xiao, J Q Zhai, Y Y Feng, N Zhou, X Zhang, J J Zou, N Li, Y Q Guo, X B Li, X J Shen, Z P Zhang, F F Shu, W Y Huang, Y Li, Z D Zhang, R A Chen, Y J Wu, S M Peng, M Huang, W J Xie, Q H Cai, F H Hou, Y H Liu, W Chen, L H Xiao, Y Y Shen. Isolation and characterization of 2019-nCoV-like coronavirus from Malayan Pangolins. bioRxiv, 2020 [Preprint] doi: 10.1101/2020.02.17.951335
39 P Liu, J Z Jiang, Y Hua, X H Wang, F H Hou, X F Wan, J Chen, J J Zou, J P Chen. Are pangolins the intermediate host of the 2019 novel coronavirus (2019-nCoV)? bioRxiv, 2020 [Preprint] doi: 10.1101/2020.02.18.954628
40 J E Hill, J D Smith. Bats: A Natural History. Austin, USA: University of Texas Press, 1984
41 G Tsagkogeorga, J Parker, E Stupka, J A Cotton, S J Rossiter. Phylogenomic analyses elucidate the evolutionary relationships of bats. Current Biology, 2013, 23(22): 2262–2267
https://doi.org/10.1016/j.cub.2013.09.014 pmid: 24184098
42 G N Eick, D S Jacobs, C A Matthee. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Molecular Biology and Evolution, 2005, 22(9): 1869–1886
https://doi.org/10.1093/molbev/msi180 pmid: 15930153
43 H Badrane, N Tordo. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. Journal of Virology, 2001, 75(17): 8096–8104
https://doi.org/10.1128/JVI.75.17.8096-8104.2001 pmid: 11483755
44 K A McColl, N Tordo, A A Aguilar Setién. Bat lyssavirus infections. Revue Scientifique et Technique (International Office of Epizootics), 2000, 19(1): 177–196
https://doi.org/10.20506/rst.19.1.1221 pmid: 11189715
45 Y Z Zhang. Discovery of hantaviruses in bats and insectivores and the evolution of the genus Hantavirus. Virus Research, 2014, 187: 15–21
https://doi.org/10.1016/j.virusres.2013.12.035 pmid: 24509342
46 K B Chua, C L Koh, P S Hooi, K F Wee, J H Khong, B H Chua, Y P Chan, M E Lim, S K Lam. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes and Infection, 2002, 4(2): 145–151
https://doi.org/10.1016/S1286-4579(01)01522-2 pmid: 11880045
47 K Halpin, P L Young, H E Field, J S Mackenzie. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. Journal of General Virology, 2000, 81(8): 1927–1932
https://doi.org/10.1099/0022-1317-81-8-1927 pmid: 10900029
48 T H Fleming, P Eby. Ecology of bat migration. In: Kunz T H, Fenton M B, eds. Bat ecology. Life history and social biology, vol 4. Chicago, USA: University of Chicago Press, 2003
49 A M Mondul, J W Krebs, J E Childs. Trends in national surveillance for rabies among bats in the United States (1993–2000). Journal of the American Veterinary Medical Association, 2003, 222(5): 633–639
https://doi.org/10.2460/javma.2003.222.633 pmid: 12619845
50 V Shankar, L A Orciari, C De Mattos, I V Kuzmin, W J Pape, T J O’Shea, C E Rupprecht. Genetic divergence of rabies viruses from bat species of Colorado, USA. Vector Borne and Zoonotic Diseases, 2005, 5(4): 330–341
https://doi.org/10.1089/vbz.2005.5.330 pmid: 16417429
51 S K P Lau, K S M Li, Y Huang, C T Shek, H Tse, M Wang, G K Y Choi, H Xu, C S F Lam, R Guo, K H Chan, B J Zheng, P C Y Woo, K Y Yuen. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. Journal of Virology, 2010, 84(6): 2808–2819
https://doi.org/10.1128/JVI.02219-09 pmid: 20071579
52 P Yu, B Hu, Z L Shi, J Cui. Geographical structure of bat SARS-related coronaviruses. Infection, Genetics and Evolution, 2019, 69: 224–229
https://doi.org/10.1016/j.meegid.2019.02.001 pmid: 30735813
53 D G Constantine, R W Emmons, J D Woodie. Rabies virus in nasal mucosa of naturally infected bats. Science, 1972, 175(4027): 1255–1256
https://doi.org/10.1126/science.175.4027.1255 pmid: 4551426
54 D J Hosken, P C Withers. Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1997, 167(1): 71–80
https://doi.org/10.1007/s003600050049 pmid: 9051907
55 S E Sulkin, R Allen. Virus infections in bats. Basel, Switzerland: Karger Publishers, 1974
56 S Subudhi, N Rapin, T K Bollinger, J E Hill, M E Donaldson, C M Davy, L Warnecke, J M Turner, C J Kyle, C K R Willis, V Misra. A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat. Journal of General Virology, 2017, 98(9): 2297–2309
https://doi.org/10.1099/jgv.0.000898 pmid: 28840816
57 N M Foley, G M Hughes, Z X Huang, M Clarke, D Jebb, C V Whelan, E J Petit, F Touzalin, O Farcy, G Jones, R D Ransome, J Kacprzyk, M J O’Connell, G Kerth, H Rebelo, L Rodrigues, S J Puechmaille, E C Teeling. Growing old, yet staying young: the role of telomeres in bats’ exceptional longevity. Science Advances, 2018, 4(2): eaao0926
58 G C Sen. Viruses and interferons. Annual Review of Microbiology, 2001, 55(1): 255–281
https://doi.org/10.1146/annurev.micro.55.1.255 pmid: 11544356
59 J Hiscott, T L A Nguyen, M Arguello, P Nakhaei, S Paz. Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene, 2006, 25(51): 6844–6867
https://doi.org/10.1038/sj.onc.1209941 pmid: 17072332
60 T Omatsu, E J Bak, Y Ishii, S Kyuwa, Y Tohya, H Akashi, Y Yoshikawa. Induction and sequencing of Rousette bat interferon alpha and beta genes. Veterinary Immunology and Immunopathology, 2008, 124(1–2): 169–176
https://doi.org/10.1016/j.vetimm.2008.03.004 pmid: 18436311
61 A Banerjee, N Rapin, T Bollinger, V Misra. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Scientific Reports, 2017, 7(1): 2232
https://doi.org/10.1038/s41598-017-01513-w pmid: 28533548
62 M Ahn, D E Anderson, Q Zhang, C W Tan, B L Lim, K Luko, M Wen, W N Chia, S Mani, L C Wang, J H J Ng, R M Sobota, C A Dutertre, F Ginhoux, Z L Shi, A T Irving, L F Wang. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nature Microbiology, 2019, 4(5): 789–799
https://doi.org/10.1038/s41564-019-0371-3 pmid: 30804542
63 J Fuchs, M Hölzer, M Schilling, C Patzina, A Schoen, T Hoenen, G Zimmer, M Marz, F Weber, M A Müller, G Kochs. Evolution and antiviral specificities of interferon-induced Mx proteins of bats against Ebola, influenza, and other RNA viruses. Journal of Virology, 2017, 91(15): e00361-17
https://doi.org/10.1128/JVI.00361-17 pmid: 28490593
64 P C De La Cruz-Rivera, M Kanchwala, H Liang, A Kumar, L F Wang, C Xing, J W Schoggins. The IFN response in bats displays distinctive IFN-stimulated gene expression kinetics with atypical RNASEL induction. Journal of Immunology, 2018, 200(1): 209–217
https://doi.org/10.4049/jimmunol.1701214 pmid: 29180486
65 J N Maina. What it takes to fly: the structural and functional respiratory refinements in birds and bats. Journal of Experimental Biology, 2000, 203(Pt 20): 3045–3064
pmid: 11003817
66 J Cadet, J R Wagner. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harbor Perspectives in Biology, 2013, 5(2): a012559
https://doi.org/10.1101/cshperspect.a012559 pmid: 23378590
67 B C Sheldon, S Verhulst. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology & Evolution, 1996, 11(8): 317–321
https://doi.org/10.1016/0169-5347(96)10039-2 pmid: 21237861
68 D Jebb, N M Foley, C V Whelan, F Touzalin, S J Puechmaille, E C Teeling. Population level mitogenomics of long-lived bats reveals dynamic heteroplasmy and challenges the Free Radical Theory of Ageing. Scientific Reports, 2018, 8(1): 13634
https://doi.org/10.1038/s41598-018-31093-2 pmid: 30206380
69 S Subudhi, N Rapin, V Misra. Immune system modulation and viral persistence in bats: understanding viral spillover. Viruses, 2019, 11(2): 192
https://doi.org/10.3390/v11020192 pmid: 30813403
70 S Belouzard, J K Millet, B N Licitra, G R Whittaker. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6): 1011–1033
https://doi.org/10.3390/v4061011 pmid: 22816037
71 B J Bosch, R van der Zee, C A M de Haan, P J M Rottier. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of Virology, 2003, 77(16): 8801–8811
https://doi.org/10.1128/JVI.77.16.8801-8811.2003 pmid: 12885899
72 W Li, F J M van Kuppeveld, Q He, P J M Rottier, B J Bosch. Cellular entry of the porcine epidemic diarrhea virus. Virus Research, 2016, 226: 117–127
https://doi.org/10.1016/j.virusres.2016.05.031 pmid: 27317167
73 L Kuo, G J Godeke, M J B Raamsman, P S Masters, P J M Rottier. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. Journal of Virology, 2000, 74(3): 1393–1406
https://doi.org/10.1128/JVI.74.3.1393-1406.2000 pmid: 10627550
74 B J Haijema, H Volders, P J M Rottier. Switching species tropism: an effective way to manipulate the feline coronavirus genome. Journal of Virology, 2003, 77(8): 4528–4538
https://doi.org/10.1128/JVI.77.8.4528-4538.2003 pmid: 12663759
75 R Casais, B Dove, D Cavanagh, P Britton. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. Journal of Virology, 2003, 77(16): 9084–9089
https://doi.org/10.1128/JVI.77.16.9084-9089.2003 pmid: 12885925
76 N C Pedersen. Virologic and immunologic aspects of feline infectious peritonitis virus infection. In: Lai M M C, Stohlman S A, eds. Coronaviruses. Advances in Experimental Medicine and Biology, vol 218. Boston, USA: Springer, 1987
77 P J Rottier, K Nakamura, P Schellen, H Volders, B J Haijema. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. Journal of Virology, 2005, 79(22): 14122–14130
https://doi.org/10.1128/JVI.79.22.14122-14130.2005 pmid: 16254347
78 W Li, M J Moore, N Vasilieva, J Sui, S K Wong, M A Berne, M Somasundaran, J L Sullivan, K Luzuriaga, T C Greenough, H Choe, M Farzan. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965): 450–454
https://doi.org/10.1038/nature02145 pmid: 14647384
79 W Li, C Zhang, J Sui, J H Kuhn, M J Moore, S Luo, S K Wong, I C Huang, K Xu, N Vasilieva, A Murakami, Y He, W A Marasco, Y Guan, H Choe, M Farzan. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO Journal, 2005, 24(8): 1634–1643
https://doi.org/10.1038/sj.emboj.7600640 pmid: 15791205
80 W Ren, X Qu, W Li, Z Han, M Yu, P Zhou, S Y Zhang, L F Wang, H Deng, Z Shi. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. Journal of Virology, 2008, 82(4): 1899–1907
https://doi.org/10.1128/JVI.01085-07 pmid: 18077725
81 K Wu, G Peng, M Wilken, R J Geraghty, F Li. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. Journal of Biological Chemistry, 2012, 287(12): 8904–8911
https://doi.org/10.1074/jbc.M111.325803 pmid: 22291007
82 H D Song, C C Tu, G W Zhang, S Y Wang, K Zheng, L C Lei, Q X Chen, Y W Gao, H Q Zhou, H Xiang, H J Zheng, S W W Chern, F Cheng, C M Pan, H Xuan, S J Chen, H M Luo, D H Zhou, Y F Liu, J F He, P Z Qin, L H Li, Y Q Ren, W J Liang, Y D Yu, L Anderson, M Wang, R H Xu, X W Wu, H Y Zheng, J D Chen, G Liang, Y Gao, M Liao, L Fang, L Y Jiang, H Li, F Chen, B Di, L J He, J Y Lin, S Tong, X Kong, L Du, P Hao, H Tang, A Bernini, X J Yu, O Spiga, Z M Guo, H Y Pan, W Z He, J C Manuguerra, A Fontanet, A Danchin, N Niccolai, Y X Li, C I Wu, G P Zhao. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(7): 2430–2435
https://doi.org/10.1073/pnas.0409608102 pmid: 15695582
83 M Letko, K Miazgowicz, R McMinn, S N Seifert, I Sola, L Enjuanes, A Carmody, N van Doremalen, V Munster. Adaptive evolution of MERS-CoV to species variation in DPP4. Cell Reports, 2018, 24(7): 1730–1737
https://doi.org/10.1016/j.celrep.2018.07.045 pmid: 30110630
84 Y Yuan, J X Qi, R C Peng, C R Li, G W Lu, J H Yan, Q H Wang, G F Gao. Molecular basis of binding between MERS-CoV and CD26s from seven bat species. Journal of Virology, 2020, 94(5): e01387-19
85 K M Peck, A S Cockrell, B L Yount, T Scobey, R S Baric, M T Heise. Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection. Journal of Virology, 2015, 89(8): 4696–4699
https://doi.org/10.1128/JVI.03445-14 pmid: 25653445
86 J W Pitera. Expected distributions of root-mean-square positional deviations in proteins. Journal of Physical Chemistry B, 2014, 118(24): 6526–6530
https://doi.org/10.1021/jp412776d pmid: 24655018
Related articles from Frontiers Journals
[1] Jinxi HUO, Bing DU, Sifan SUN, Shaozhen HE, Ning ZHAO, Qingchang LIU, Hong ZHAI. A novel aldo-keto reductase gene, IbAKR, from sweet potato confers higher tolerance to cadmium stress in tobacco[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 206-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed