Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  学科浏览  |  专题文章  |  热点文章  |  下载排行
Frontiers of Agricultural Science and Engineering    2020, Vol. 7 Issue (2) : 181-187     https://doi.org/10.15302/J-FASE-2020332
REVIEW
Genome-edited crops: how to move them from laboratory to market
Kunling CHEN1, Caixia GAO1,2()
1. State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
2. College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100101, China
全文: PDF(556 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent breakthroughs in CRISPR technology allow specific genome manipulation of almost all crops and have initiated a revolution in precision crop breeding. Rationally-based regulation and widespread public acceptance are needed to propel genome-edited crops from laboratory to market and to translate this innovative technology into agricultural productivity.

Keywords CRISPR/Cas      genome editing      base editing      precision breeding      regulation     
最新录用日期:    在线预览日期:    发布日期: 2020-04-28
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Kunling CHEN
Caixia GAO
引用本文:   
Kunling CHEN,Caixia GAO. Genome-edited crops: how to move them from laboratory to market[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 181-187.
网址:  
https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2020332     OR     https://journal.hep.com.cn/fase/EN/Y2020/V7/I2/181
Fig.1  Classification of CRISPR/Cas genome editing techniques according to DNA repair mechanism.
Fig.2  Scientific regulation of GECs developed by different genome editing techniques.
1 A Scheben, F Wolter, J Batley, H Puchta, D Edwards. Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytologist, 2017, 216(3): 682–698
https://doi.org/10.1111/nph.14702 pmid: 28762506
2 M Pacher, H Puchta. From classical mutagenesis to nuclease-based breeding—directing natural DNA repair for a natural end-product. Plant Journal, 2017, 90(4): 819–833
https://doi.org/10.1111/tpj.13469 pmid: 28027431
3 J R Prado, G Segers, T Voelker, D Carson, R Dobert, J Phillips, K Cook, C Cornejo, J Monken, L Grapes, T Reynolds, S Martino-Catt. Genetically engineered crops: from idea to product. Annual Review of Plant Biology, 2014, 65(1): 769–790
https://doi.org/10.1146/annurev-arplant-050213-040039 pmid: 24579994
4 K Chen, Y Wang, R Zhang, H Zhang, C Gao. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 2019, 70(1): 667–697
https://doi.org/10.1146/annurev-arplant-050718-100049 pmid: 30835493
5 J F Li, J E Norville, J Aach, M McCormack, D Zhang, J Bush, G M Church, J Sheen. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688–691
https://doi.org/10.1038/nbt.2654 pmid: 23929339
6 V Nekrasov, B Staskawicz, D Weigel, J D Jones, S Kamoun. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(8): 691–693
https://doi.org/10.1038/nbt.2655 pmid: 23929340
7 Q Shan, Y Wang, J Li, Y Zhang, K Chen, Z Liang, K Zhang, J Liu, J J Xi, J L Qiu, C Gao. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 686–688
https://doi.org/10.1038/nbt.2650 pmid: 23929338
8 K Yin, C Gao, J L Qiu. Progress and prospects in plant genome editing. Nature Plants, 2017, 3(8): 17107
https://doi.org/10.1038/nplants.2017.107 pmid: 28758991
9 R Mishra, R K Joshi, K Zhao. Base editing in crops: current advances, limitations and future implications. Plant Biotechnology Journal, 2020, 18(1): 20–31
https://doi.org/10.1111/pbi.13225 pmid: 31365173
10 A V Anzalone, P B Randolph, J R Davis, A A Sousa, L W Koblan, J M Levy, P J Chen, C Wilson, G A Newby, A Raguram, D R Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
https://doi.org/10.1038/s41586-019-1711-4 pmid: 31634902
11 J W Woo, J Kim, S I Kwon, C Corvalán, S W Cho, H Kim, S G Kim, S T Kim, S Choe, J S Kim. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 2015, 33(11): 1162–1164
https://doi.org/10.1038/nbt.3389 pmid: 26479191
12 S Svitashev, C Schwartz, B Lenderts, J K Young, A Mark Cigan. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7(1): 13274
https://doi.org/10.1038/ncomms13274 pmid: 27848933
13 Z Liang, K Chen, T Li, Y Zhang, Y Wang, Q Zhao, J Liu, H Zhang, C Liu, Y Ran, C Gao. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 2017, 8(1): 14261
https://doi.org/10.1038/ncomms14261 pmid: 28098143
14 Y Wang, X Cheng, Q Shan, Y Zhang, J Liu, C Gao, J L Qiu. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9): 947–951
https://doi.org/10.1038/nbt.2969 pmid: 25038773
15 R Xu, Y Yang, R Qin, H Li, C Qiu, L Li, P Wei, J Yang. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. Journal of Genetics and Genomics, 2016, 43(8): 529–532
https://doi.org/10.1016/j.jgg.2016.07.003 pmid: 27543262
16 S Sánchez-León, J Gil-Humanes, C V Ozuna, M J Giménez, C Sousa, D F Voytas, F Barro. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 2018, 16(4): 902–910
https://doi.org/10.1111/pbi.12837 pmid: 28921815
17 H Zhang, X Si, X Ji, R Fan, J Liu, K Chen, D Wang, C Gao. Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 2018, 36(9): 894–898
https://doi.org/10.1038/nbt.4202 pmid: 30080209
18 R Oliva, C Ji, G Atienza-Grande, J C Huguet-Tapia, A Perez-Quintero, T Li, J S Eom, C Li, H Nguyen, B Liu, F Auguy, C Sciallano, V T Luu, G S Dossa, S Cunnac, S M Schmidt, I H Slamet-Loedin, C Vera Cruz, B Szurek, W B Frommer, F F White, B Yang. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology, 2019, 37(11): 1344–1350
https://doi.org/10.1038/s41587-019-0267-z pmid: 31659337
19 I Khanday, D Skinner, B Yang, R Mercier, V Sundaresan. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature, 2019, 565(7737): 91–95
https://doi.org/10.1038/s41586-018-0785-8 pmid: 30542157
20 C Wang, Q Liu, Y Shen, Y Hua, J Wang, J Lin, M Wu, T Sun, Z Cheng, R Mercier, K Wang. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 2019, 37(3): 283–286
https://doi.org/10.1038/s41587-018-0003-0 pmid: 30610223
21 J Shi, H Gao, H Wang, H R Lafitte, R L Archibald, M Yang, S M Hakimi, H Mo, J E Habben. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 2017, 15(2): 207–216
https://doi.org/10.1111/pbi.12603 pmid: 27442592
22 Y Sun, X Zhang, C Wu, Y He, Y Ma, H Hou, X Guo, W Du, Y Zhao, L Xia. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant, 2016, 9(4): 628–631
https://doi.org/10.1016/j.molp.2016.01.001 pmid: 26768120
23 J Li, X Meng, Y Zong, K Chen, H Zhang, J Liu, J Li, C Gao. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nature Plants, 2016, 2(10): 16139
https://doi.org/10.1038/nplants.2016.139 pmid: 27618611
24 R Zhang, J Liu, Z Chai, S Chen, Y Bai, Y Zong, K Chen, J Li, L Jiang, C Gao. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 2019, 5(5): 480–485
https://doi.org/10.1038/s41477-019-0405-0 pmid: 30988404
25 T Li, X Yang, Y Yu, X Si, X Zhai, H Zhang, W Dong, C Gao, C Xu. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 2018, 36(12): 1160–1163
https://doi.org/10.1038/nbt.4273 pmid: 30272676
26 Z H Lemmon, N T Reem, J Dalrymple, S Soyk, K E Swartwood, D Rodriguez-Leal, J Van Eck, Z B Lippman. Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants, 2018, 4(10): 766–770
https://doi.org/10.1038/s41477-018-0259-x pmid: 30287957
27 A Zsögön, T Čermák, E R Naves, M M Notini, K H Edel, S Weinl, L Freschi, D F Voytas, J Kudla, L E P Peres. De novo domestication of wild tomato using genome editing. Nature Biotechnology, 2018, 36(12): 1211–1216
https://doi.org/10.1038/nbt.4272 pmid: 30272678
28 T Ishii. Crop gene-editing: should we bypass or apply existing GMO policy? Trends in Plant Science, 2018, 23(11): 947–950
https://doi.org/10.1016/j.tplants.2018.09.001 pmid: 30241735
29 T Ishii, M Araki. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2017, 8(1): 44–56
https://doi.org/10.1080/21645698.2016.1261787 pmid: 27960622
30 A I Whelan, M A Lema. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2015, 6(4): 253–265
https://doi.org/10.1080/21645698.2015.1114698 pmid: 26552666
31 L Zannoni. Evolving regulatory landscape for genome-edited plants. CRISPR Journal, 2019, 2(1): 3–8
https://doi.org/10.1089/crispr.2018.0016 pmid: 31021233
32 S J Smyth. Canadian regulatory perspectives on genome engineered crops. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2017, 8(1): 35–43
https://doi.org/10.1080/21645698.2016.1257468 pmid: 27858499
33 Office of the Gene Technology Regulator (OGTR) of Australian Government of Department of Health. Overview of the Gene Technology Amendment (2019 Measures No. 1) Regulations 2001. Available at OGTR website on September 1, 2019
34 G Li, Y G Liu, Y Chen. Genome-editing technologies: the gap between application and policy. Science China Life Sciences, 2019, 62(11): 1534–1538
https://doi.org/10.1007/s11427-019-1566-1 pmid: 31686319
35 United States Department of Agriculture (USDA). Secretary Perdue Issues USDA Statement on Plant Breeding Innovation. Available at USDA website on March 28, 2018
36 J Cameron. 13 nations say it’s time to end ‘political posturing’ and embrace crop gene editing. Available at Genetic Literacy Project website on November 7, 2018
37 C Bruetschy. The EU regulatory framework on genetically modified organisms (GMOs). Transgenic Research, 2019, 28(Suppl 2): 169–174
https://doi.org/10.1007/s11248-019-00149-y pmid: 31321701
38 S Huang, D Weigel, R N Beachy, J Li. A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48(2): 109–111
https://doi.org/10.1038/ng.3484 pmid: 26813761
39 A Scheben, D Edwards. Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biology, 2018, 19(1): 178
https://doi.org/10.1186/s13059-018-1555-5 pmid: 30367679
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn