Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  学科浏览  |  专题文章  |  热点文章  |  下载排行
Frontiers of Agricultural Science and Engineering    2020, Vol. 7 Issue (2) : 227-228     https://doi.org/10.15302/J-FASE-2020321
COMMENTS
Base editing technology
Yidi SUN1,2, Erwei ZUO3, Hui YANG4()
1. Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
2. Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
3. Shenzhen Branch, Guangdong Labratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
4. Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
全文: PDF(76 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
在线预览日期:    发布日期: 2020-04-28
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Yidi SUN
Erwei ZUO
Hui YANG
引用本文:   
Yidi SUN,Erwei ZUO,Hui YANG. Base editing technology[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 227-228.
网址:  
https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2020321     OR     https://journal.hep.com.cn/fase/EN/Y2020/V7/I2/227
1 S Goodwin, J D McPherson, W R McCombie. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 2016, 17(6): 333–351
https://doi.org/10.1038/nrg.2016.49 pmid: 27184599
2 A C Komor, Y B Kim, M S Packer, J A Zuris, D R Liu. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420–424
https://doi.org/10.1038/nature17946 pmid: 27096365
3 K Nishida, T Arazoe, N Yachie, S Banno, M Kakimoto, M Tabata, M Mochizuki, A Miyabe, M Araki, K Y Hara, Z Shimatani, A Kondo. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353(6305): aaf8729
https://doi.org/10.1126/science.aaf8729 pmid: 27492474
4 N M Gaudelli, A C Komor, H A Rees, M S Packer, A H Badran, D I Bryson, D R Liu. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464–471
https://doi.org/10.1038/nature24644 pmid: 29160308
5 H A Rees, D R Liu. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews: Genetics, 2018, 19(12): 770–788
https://doi.org/10.1038/s41576-018-0059-1 pmid: 30323312
6 H Nishimasu, F A Ran, P D Hsu, S Konermann, S I Shehata, N Dohmae, R Ishitani, F Zhang, O Nureki. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5): 935–949
https://doi.org/10.1016/j.cell.2014.02.001 pmid: 24529477
7 O O Abudayyeh, J S Gootenberg, P Essletzbichler, S Han, J Joung, J J Belanto, V Verdine, D B T Cox, M J Kellner, A Regev, E S Lander, D F Voytas, A Y Ting, F Zhang. RNA targeting with CRISPR-Cas13. Nature, 2017, 550(7675): 280–284
https://doi.org/10.1038/nature24049 pmid: 28976959
8 Y Ma, J Zhang, W Yin, Z Zhang, Y Song, X Chang. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods, 2016, 13(12): 1029–1035
https://doi.org/10.1038/nmeth.4027 pmid: 27723754
9 A C Komor, K T Zhao, M S Packer, N M Gaudelli, A L Waterbury, L W Koblan, Y B Kim, A H Badran, D R Liu. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances, 2017, 3(8): eaao4774
10 D Kim, K Lim, S T Kim, S H Yoon, K Kim, S M Ryu, J S Kim. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nature Biotechnology, 2017, 35(5): 475–480
https://doi.org/10.1038/nbt.3852 pmid: 28398345
11 S Jin, Y Zong, Q Gao, Z Zhu, Y Wang, P Qin, C Liang, D Wang, J L Qiu, F Zhang, C Gao. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019, 364(6437): 292–295
https://doi.org/10.1126/science.aaw7166 pmid: 30819931
12 E Zuo, Y Sun, W Wei, T Yuan, W Ying, H Sun, L Yuan, L M Steinmetz, Y Li, H Yang. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019, 364(6437): 289–292
https://doi.org/10.1126/science.aav9973 pmid: 30819928
13 J Grünewald, R Zhou, S Iyer, C A Lareau, S P Garcia, M J Aryee, J Keith Joung. CRISPR adenine and cytosine base editors with reduced RNA off-target activities. bioRxiv, 2019: 631721
14 C Zhou, Y Sun, R Yan, Y Liu, E Zuo, C Gu, L Han, Y Wei, X Hu, R Zeng, Y Li, H Zhou, F Guo, H Yang. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature, 2019, 571(7764): 275–278
https://doi.org/10.1038/s41586-019-1314-0 pmid: 31181567
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn