Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  学科浏览  |  专题文章  |  热点文章  |  下载排行
Frontiers of Agricultural Science and Engineering    2020, Vol. 7 Issue (2) : 123-128     https://doi.org/10.15302/J-FASE-2019309
REVIEW
A brief review of genome editing technology for generating animal models
Haoyi WANG1,2,3(), Sen WU4,5(), Mario R. CAPECCHI6(), Rudolf JAENISCH7,8()
1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2. University of the Chinese Academy of Sciences, Beijing 100049, China
3. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
4. Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
5. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
6. Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
7. Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
8. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
全文: PDF(175 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The recent development of genome editing technologies has given researchers unprecedented power to alter DNA sequences at chosen genomic loci, thereby generating various genetically edited animal models. This mini-review briefly summarizes the development of major genome editing tools, focusing on the application of these tools to generate animal models in multiple species.

Keywords animal model      CRISPR      genome editing      TALEN      ZFN     
最新录用日期:    在线预览日期:    发布日期: 2020-04-28
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Haoyi WANG
Sen WU
Mario R. CAPECCHI
Rudolf JAENISCH
引用本文:   
Haoyi WANG,Sen WU,Mario R. CAPECCHI, et al. A brief review of genome editing technology for generating animal models[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 123-128.
网址:  
https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2019309     OR     https://journal.hep.com.cn/fase/EN/Y2020/V7/I2/123
1 R Jaenisch , B Mintz . Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(4): 1250–1254
2 R Jaenisch. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(4): 1260–1264
https://doi.org/10.1073/pnas.73.4.1260 pmid: 1063407
3 J W Gordon, G A Scangos, D J Plotkin, J A Barbosa, F H Ruddle. Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(12): 7380–7384
https://doi.org/10.1073/pnas.77.12.7380 pmid: 6261253
4 A Schnieke, K Harbers, R Jaenisch. Embryonic lethal mutation in mice induced by retrovirus insertion into the α1(I) collagen gene. Nature, 1983, 304(5924): 315–320
https://doi.org/10.1038/304315a0 pmid: 6308457
5 O Smithies, R G Gregg, S S Boggs, M A Koralewski, R S Kucherlapati. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature, 1985, 317(6034): 230–234
https://doi.org/10.1038/317230a0 pmid: 2995814
6 K R Thomas, K R Folger, M R Capecchi. High frequency targeting of genes to specific sites in the mammalian genome. Cell, 1986, 44(3): 419–428
https://doi.org/10.1016/0092-8674(86)90463-0 pmid: 3002636
7 M R Capecchi. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews: Genetics, 2005, 6(6): 507–512
https://doi.org/10.1038/nrg1619 pmid: 15931173
8 A Bradley, M Evans, M H Kaufman, E Robertson. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984, 309(5965): 255–256
https://doi.org/10.1038/309255a0 pmid: 6717601
9 K R Thomas, M R Capecchi. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51(3): 503–512
https://doi.org/10.1016/0092-8674(87)90646-5 pmid: 2822260
10 T Doetschman, R G Gregg, N Maeda, M L Hooper, D W Melton, S Thompson, O Smithies. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 1987, 330(6148): 576–578
https://doi.org/10.1038/330576a0 pmid: 3683574
11 M Buehr, S Meek, K Blair, J Yang, J Ure, J Silva, R McLay, J Hall, Q L Ying, A Smith. Capture of authentic embryonic stem cells from rat blastocysts. Cell, 2008, 135(7): 1287–1298
https://doi.org/10.1016/j.cell.2008.12.007 pmid: 19109897
12 P Rouet, F Smih, M Jasin. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and Cellular Biology, 1994, 14(12): 8096–8106
https://doi.org/10.1128/MCB.14.12.8096 pmid: 7969147
13 N Rudin, E Sugarman, J E Haber. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics, 1989, 122(3): 519–534
pmid: 2668114
14 G Silva, L Poirot, R Galetto, J Smith, G Montoya, P Duchateau, F Pâques. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Current Gene Therapy, 2011, 11(1): 11–27
https://doi.org/10.2174/156652311794520111 pmid: 21182466
15 J Miller, A D McLachlan, A Klug. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO Journal, 1985, 4(6): 1609–1614
https://doi.org/10.1002/j.1460-2075.1985.tb03825.x pmid: 4040853
16 H S Najafabadi, S Mnaimneh, F W Schmitges, M Garton, K N Lam, A Yang, M Albu, M T Weirauch, E Radovani, P M Kim, J Greenblatt, B J Frey, T R Hughes. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nature Biotechnology, 2015, 33(5): 555–562
https://doi.org/10.1038/nbt.3128 pmid: 25690854
17 H Takatsuji. Zinc-finger transcription factors in plants. Cellular and Molecular Life Sciences, 1998, 54(6): 582–596
https://doi.org/10.1007/s000180050186 pmid: 9676577
18 F D Urnov, E J Rebar, M C Holmes, H S Zhang, P D Gregory. Genome editing with engineered zinc finger nucleases. Nature Reviews: Genetics, 2010, 11(9): 636–646
https://doi.org/10.1038/nrg2842 pmid: 20717154
19 M Bibikova, D Carroll, D J Segal, J K Trautman, J Smith, Y G Kim, S Chandrasegaran. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and Cellular Biology, 2001, 21(1): 289–297
https://doi.org/10.1128/MCB.21.1.289-297.2001 pmid: 11113203
20 M Bibikova, M Golic, K G Golic, D Carroll. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161(3): 1169–1175
pmid: 12136019
21 M Bibikova, K Beumer, J K Trautman, D Carroll. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300(5620): 764
https://doi.org/10.1126/science.1079512 pmid: 12730594
22 K J Beumer, J K Trautman, A Bozas, J L Liu, J Rutter, J G Gall, D Carroll. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 19821–19826
https://doi.org/10.1073/pnas.0810475105 pmid: 19064913
23 Y Doyon, J M McCammon, J C Miller, F Faraji, C Ngo, G E Katibah, R Amora, T D Hocking, L Zhang, E J Rebar, P D Gregory, F D Urnov, S L Amacher. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 702–708
https://doi.org/10.1038/nbt1409 pmid: 18500334
24 X Meng, M B Noyes, L J Zhu, N D Lawson, S A Wolfe. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 695–701
https://doi.org/10.1038/nbt1398 pmid: 18500337
25 A M Geurts, G J Cost, Y Freyvert, B Zeitler, J C Miller, V M Choi, S S Jenkins, A Wood, X Cui, X Meng, A Vincent, S Lam, M Michalkiewicz, R Schilling, J Foeckler, S Kalloway, H Weiler, S Ménoret, I Anegon, G D Davis, L Zhang, E J Rebar, P D Gregory, F D Urnov, H J Jacob, R Buelow. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 2009, 325(5939): 433
https://doi.org/10.1126/science.1172447 pmid: 19628861
26 J Boch, H Scholze, S Schornack, A Landgraf, S Hahn, S Kay, T Lahaye, A Nickstadt, U Bonas. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326(5959): 1509–1512
https://doi.org/10.1126/science.1178811 pmid: 19933107
27 M J Moscou, A J Bogdanove. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501
https://doi.org/10.1126/science.1178817 pmid: 19933106
28 J C Miller, S Tan, G Qiao, K A Barlow, J Wang, D F Xia, X Meng, D E Paschon, E Leung, S J Hinkley, G P Dulay, K L Hua, I Ankoudinova, G J Cost, F D Urnov, H S Zhang, M C Holmes, L Zhang, P D Gregory, E J Rebar. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2011, 29(2): 143–148
https://doi.org/10.1038/nbt.1755 pmid: 21179091
29 D Hockemeyer, H Wang, S Kiani, C S Lai, Q Gao, J P Cassady, G J Cost, L Zhang, Y Santiago, J C Miller, B Zeitler, J M Cherone, X Meng, S J Hinkley, E J Rebar, P D Gregory, F D Urnov, R Jaenisch. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 2011, 29(8): 731–734
https://doi.org/10.1038/nbt.1927 pmid: 21738127
30 L Tesson, C Usal, S Ménoret, E Leung, B J Niles, S Remy, Y Santiago, A I Vincent, X Meng, L Zhang, P D Gregory, I Anegon, G J Cost. Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 2011, 29(8): 695–696
https://doi.org/10.1038/nbt.1940 pmid: 21822240
31 J D Sander, L Cade, C Khayter, D Reyon, R T Peterson, J K Joung, J R J Yeh. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology, 2011, 29(8): 697–698
https://doi.org/10.1038/nbt.1934 pmid: 21822241
32 P Huang, A Xiao, M Zhou, Z Zhu, S Lin, B Zhang. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 2011, 29(8): 699–700
https://doi.org/10.1038/nbt.1939 pmid: 21822242
33 Z Qiu, M Liu, Z Chen, Y Shao, H Pan, G Wei, C Yu, L Zhang, X Li, P Wang, H Y Fan, B Du, B Liu, M Liu, D Li. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Research, 2013, 41(11): e120
https://doi.org/10.1093/nar/gkt258 pmid: 23630316
34 H Liu, Y Chen, Y Niu, K Zhang, Y Kang, W Ge, X Liu, E Zhao, C Wang, S Lin, B Jing, C Si, Q Lin, X Chen, H Lin, X Pu, Y Wang, B Qin, F Wang, H Wang, W Si, J Zhou, T Tan, T Li, S Ji, Z Xue, Y Luo, L Cheng, Q Zhou, S Li, Y E Sun, W Ji. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell, 2014, 14(3): 323–328
https://doi.org/10.1016/j.stem.2014.01.018 pmid: 24529597
35 S Remy, L Tesson, S Menoret, C Usal, A De Cian, V Thepenier, R Thinard, D Baron, M Charpentier, J B Renaud, R Buelow, G J Cost, C Giovannangeli, A Fraichard, J P Concordet, I Anegon. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases. Genome Research, 2014, 24(8): 1371–1383
https://doi.org/10.1101/gr.171538.113 pmid: 24989021
36 B Wefers, M Meyer, O Ortiz, M Hrabé de Angelis, J Hansen, W Wurst, R Kühn. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(10): 3782–3787
https://doi.org/10.1073/pnas.1218721110 pmid: 23426636
37 V M Bedell, Y Wang, J M Campbell, T L Poshusta, C G Starker, R G 2nd Krug, W Tan, S G Penheiter, A C Ma, A Y H Leung, S C Fahrenkrug, D F Carlson, D F Voytas, K J Clark, J J Essner, S C Ekker. In vivo genome editing using a high-efficiency TALEN system. Nature, 2012, 491(7422): 114–118
https://doi.org/10.1038/nature11537 pmid: 23000899
38 H Wang, Y C Hu, S Markoulaki, G G Welstead, A W Cheng, C S Shivalila, T Pyntikova, D B Dadon, D F Voytas, A J Bogdanove, D C Page, R Jaenisch. TALEN-mediated editing of the mouse Y chromosome. Nature Biotechnology, 2013, 31(6): 530–532
https://doi.org/10.1038/nbt.2595 pmid: 23666012
39 W Tan, D F Carlson, C A Lancto, J R Garbe, D A Webster, P B Hackett, S C Fahrenkrug. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16526–16531
https://doi.org/10.1073/pnas.1310478110 pmid: 24014591
40 D F Carlson, W Tan, S G Lillico, D Stverakova, C Proudfoot, M Christian, D F Voytas, C R Long, C B Whitelaw, S C Fahrenkrug. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17382–17387
https://doi.org/10.1073/pnas.1211446109 pmid: 23027955
41 K S Makarova, Y I Wolf, O S Alkhnbashi, F Costa, S A Shah, S J Saunders, R Barrangou, S J Brouns, E Charpentier, D H Haft, P Horvath, S Moineau, F J Mojica, R M Terns, M P Terns, M F White, A F Yakunin, R A Garrett, J van der Oost, R Backofen, E V Koonin. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews: Microbiology, 2015, 13(11): 722–736
https://doi.org/10.1038/nrmicro3569 pmid: 26411297
42 F Jiang, J A Doudna. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics, 2017, 46(1): 505–529
https://doi.org/10.1146/annurev-biophys-062215-010822 pmid: 28375731
43 G Gasiunas, R Barrangou, P Horvath, V Siksnys. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579–E2586
https://doi.org/10.1073/pnas.1208507109 pmid: 22949671
44 M Jinek, K Chylinski, I Fonfara, M Hauer, J A Doudna, E Charpentier. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
https://doi.org/10.1126/science.1225829 pmid: 22745249
45 P Mali, L Yang, K M Esvelt, J Aach, M Guell, J E DiCarlo, J E Norville, G M Church. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
https://doi.org/10.1126/science.1232033 pmid: 23287722
46 L Cong, F A Ran, D Cox, S Lin, R Barretto, N Habib, P D Hsu, X Wu, W Jiang, L A Marraffini, F Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
https://doi.org/10.1126/science.1231143 pmid: 23287718
47 H Wang, H Yang, C S Shivalila, M M Dawlaty, A W Cheng, F Zhang, R Jaenisch. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4): 910–918
https://doi.org/10.1016/j.cell.2013.04.025 pmid: 23643243
48 L Yang, M Güell, D Niu, H George, E Lesha, D Grishin, J Aach, E Shrock, W Xu, J Poci, R Cortazio, R A Wilkinson, J A Fishman, G Church. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015, 350(6264): 1101–1104
https://doi.org/10.1126/science.aad1191 pmid: 26456528
49 H Yang, H Wang, C S Shivalila, A W Cheng, L Shi, R Jaenisch. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 2013, 154(6): 1370–1379
https://doi.org/10.1016/j.cell.2013.08.022 pmid: 23992847
50 W Li, F Teng, T Li, Q Zhou. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(8): 684–686
https://doi.org/10.1038/nbt.2652 pmid: 23929337
51 D Li, Z Qiu, Y Shao, Y Chen, Y Guan, M Liu, Y Li, N Gao, L Wang, X Lu, Y Zhao, M Liu. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 681–683
https://doi.org/10.1038/nbt.2661 pmid: 23929336
52 W Y Hwang, Y Fu, D Reyon, M L Maeder, S Q Tsai, J D Sander, R T Peterson, J R Yeh, J K Joung. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(3): 227–229
https://doi.org/10.1038/nbt.2501 pmid: 23360964
53 G Xiang, J Ren, T Hai, R Fu, D Yu, J Wang, W Li, H Wang, Q Zhou. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cellular and Molecular Life Sciences, 2018, 75(24): 4619–4628
https://doi.org/10.1007/s00018-018-2917-6 pmid: 30259067
54 Y Niu, B Shen, Y Cui, Y Chen, J Wang, L Wang, Y Kang, X Zhao, W Si, W Li, A P Xiang, J Zhou, X Guo, Y Bi, C Si, B Hu, G Dong, H Wang, Z Zhou, T Li, T Tan, X Pu, F Wang, S Ji, Q Zhou, X Huang, W Ji, J Sha. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4): 836–843
https://doi.org/10.1016/j.cell.2014.01.027 pmid: 24486104
55 M Hashimoto, T Takemoto. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Scientific Reports, 2015, 5(1): 11315
https://doi.org/10.1038/srep11315 pmid: 26066060
56 W Qin, S L Dion, P M Kutny, Y Zhang, A W Cheng, N L Jillette, A Malhotra, A M Geurts, Y G Chen, H Wang. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics, 2015, 200(2): 423–430
https://doi.org/10.1534/genetics.115.176594 pmid: 25819794
57 T Kaneko, T Sakuma, T Yamamoto, T Mashimo. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Scientific Reports, 2014, 4(1): 6382
https://doi.org/10.1038/srep06382 pmid: 25269785
58 W Wang, P M Kutny, S L Byers, C J Longstaff, M J DaCosta, C Pang, Y Zhang, R A Taft, F W Buaas, H Wang. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. Journal of Genetics and Genomics, 2016, 43(5): 319–327
https://doi.org/10.1016/j.jgg.2016.02.004 pmid: 27210041
59 G Takahashi, C B Gurumurthy, K Wada, H Miura, M Sato, M Ohtsuka. GONAD: genome-editing via Oviductal Nucleic Acids Delivery system: a novel microinjection independent genome engineering method in mice. Scientific Reports, 2015, 5(1): 11406
https://doi.org/10.1038/srep11406 pmid: 26096991
60 Y Wu, H Zhou, X Fan, Y Zhang, M Zhang, Y Wang, Z Xie, M Bai, Q Yin, D Liang, W Tang, J Liao, C Zhou, W Liu, P Zhu, H Guo, H Pan, C Wu, H Shi, L Wu, F Tang, J Li. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research, 2015, 25(1): 67–79
https://doi.org/10.1038/cr.2014.160 pmid: 25475058
61 L Wei, X Wang, S Yang, W Yuan, J Li. Efficient generation of the mouse model with a defined point mutation through haploid cell-mediated gene editing. Journal of Genetics and Genomics, 2017, 44(9): 461–463
https://doi.org/10.1016/j.jgg.2017.07.004 pmid: 28943147
62 M Adli. The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9(1): 1911
https://doi.org/10.1038/s41467-018-04252-2 pmid: 29765029
63 H Wang, M La Russa, L S Qi. CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry, 2016, 85(1): 227–264
https://doi.org/10.1146/annurev-biochem-060815-014607 pmid: 27145843
64 H A Rees, D R Liu. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews: Genetics, 2018, 19(12): 770–788
https://doi.org/10.1038/s41576-018-0059-1 pmid: 30323312
65 K Nishida, T Arazoe, N Yachie, S Banno, M Kakimoto, M Tabata, M Mochizuki, A Miyabe, M Araki, K Y Hara, Z Shimatani, A Kondo. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353(6305): aaf8729
https://doi.org/10.1126/science.aaf8729 pmid: 27492474
66 A C Komor, Y B Kim, M S Packer, J A Zuris, D R Liu. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420–424
https://doi.org/10.1038/nature17946 pmid: 27096365
67 N M Gaudelli, A C Komor, H A Rees, M S Packer, A H Badran, D I Bryson, D R Liu. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464–471
https://doi.org/10.1038/nature24644 pmid: 29160308
68 Z Liu, Z Lu, G Yang, S Huang, G Li, S Feng, Y Liu, J Li, W Yu, Y Zhang, J Chen, Q Sun, X Huang. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nature Communications, 2018, 9(1): 2338
https://doi.org/10.1038/s41467-018-04768-7 pmid: 29904106
69 P Liang, H Sun, Y Sun, X Zhang, X Xie, J Zhang, Z Zhang, Y Chen, C Ding, Y Xiong, W Ma, D Liu, J Huang, Z Songyang. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein & Cell, 2017, 8(8): 601–611
https://doi.org/10.1007/s13238-017-0418-2 pmid: 28585179
70 K Kim, S M Ryu, S T Kim, G Baek, D Kim, K Lim, E Chung, S Kim, J S Kim. Highly efficient RNA-guided base editing in mouse embryos. Nature Biotechnology, 2017, 35(5): 435–437
https://doi.org/10.1038/nbt.3816 pmid: 28244995
71 Y Ma, L Yu, X Zhang, C Xin, S Huang, L Bai, W Chen, R Gao, J Li, S Pan, X Qi, X Huang, L Zhang. Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats. Cell Discovery, 2018, 4(1): 39
https://doi.org/10.1038/s41421-018-0047-9 pmid: 30038797
72 Z Liu, M Chen, S Chen, J Deng, Y Song, L Lai, Z Li. Highly efficient RNA-guided base editing in rabbit. Nature Communications, 2018, 9(1): 2717
https://doi.org/10.1038/s41467-018-05232-2 pmid: 30006570
73 L Yang, X Zhang, L Wang, S Yin, B Zhu, L Xie, Q Duan, H Hu, R Zheng, Y Wei, L Peng, H Han, J Zhang, W Qiu, H Geng, S Siwko, X Zhang, M Liu, D Li. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein & Cell, 2018, 9(9): 814–819
https://doi.org/10.1007/s13238-018-0568-x pmid: 30066232
74 A V Anzalone, P B Randolph, J R Davis, A A Sousa, L W Koblan, J M Levy, P J Chen, C Wilson, G A Newby, A Raguram, D R Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
https://doi.org/10.1038/s41586-019-1711-4 pmid: 31634902
75 S E Klompe, P L H Vo, T S Halpin-Healy, S H Sternberg. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature, 2019, 571(7764): 219–225
https://doi.org/10.1038/s41586-019-1323-z pmid: 31189177
76 J Strecker, A Ladha, Z Gardner, J L Schmid-Burgk, K S Makarova, E V Koonin, F Zhang. RNA-guided DNA insertion with CRISPR-associated transposases. Science, 2019, 365(6448): 48–53
https://doi.org/10.1126/science.aax9181 pmid: 31171706
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn