Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  学科浏览  |  专题文章  |  热点文章  |  下载排行
Frontiers of Agricultural Science and Engineering    2020, Vol. 7 Issue (2) : 161-170     https://doi.org/10.15302/J-FASE-2019308
REVIEW
Base editing in pigs for precision breeding
Ruigao SONG1,2, Yu WANG3, Yanfang WANG3(), Jianguo ZHAO1,2()
1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2. Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
3. State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
全文: PDF(435 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pigs are one of the most important domesticated animals and have great value in agriculture and biomedicine. Single nucleotide polymorphisms (SNPs) are a dominant type of genetic variation among individual pigs and contribute to the formation of traits. Precision single base substitution provides a strategy for accurate genetic improvement in pig production with the characterization of functional SNPs and genetic variants in pigs. Base editing has recently been developed as the latest gene-editing tool that can directly make changes in single nucleotides without introducing double-stranded DNA breaks (DSBs), providing a promising solution for precise genetic modification in large animals. This review summarizes gene-editing developments and highlights recent genetic dissection related to SNPs in major economic traits which may have the potential to be modified using SNP-editing applications. In addition, limitations and future directions of base editing in pig breeding are discussed.

Keywords base editing      genetic improvement      pigs      single nucleotide polymorphisms     
最新录用日期:    在线预览日期:    发布日期: 2020-04-28
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Ruigao SONG
Yu WANG
Yanfang WANG
Jianguo ZHAO
引用本文:   
Ruigao SONG,Yu WANG,Yanfang WANG, et al. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
网址:  
https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2019308     OR     https://journal.hep.com.cn/fase/EN/Y2020/V7/I2/161
Functional SNP Gene Economic trait
c.265T>C[34] FASN Backfat fatty acid composition
c.2573T>C[53] MTTP Backfat fatty acid composition
g.G3072A[54] IGF2 Backfat thickness
c.555C>T[55] CTNNBL1 Backfat traits
c.892G>A[40] MC4R Fatness
c.205G>A[56] SLC39A7 Carcass traits
g.15G>A[57] CTSK Backfat thickness
g.233C>T[58] CRH Growth and body composition
c.131T>A[59] APOA2 Fatty acid composition
c.I199V[36] PRKAG3 Meat quality
c.T30N[36] PRKAG3 Meat quality
g.8227C>G[60] MUC4 Production traits
c.C2604T[61] PIK3C3 Production traits
g.A53G[62] IGFBP3 Litter size
g.35547A>G[63] ESR2 Sperm motility
g.158 A>C[64] PLCz Sperm concentration
g.358A>T[65] CD9 Sperm motility
g.C7462G[66] CXCL12 Pseudorabies virus disease resistance
c.12164+ 79G>A[66] BAT2 Immunological traits
c.86172+ 140C>T[66] Mx1 Immunological traits
g.G443A[67] TAP1 PRRSV resistance
c.933A>G[68] TLR3 PRRSV susceptibility
c.761A>G[69] IRF7 Health and immunity
g.2115T>C[70] LMP2 Haematological traits
g.1232C>G[70] LMP7 Haematological traits
c.C522T[71] BPI Disease resistance
c.A1060G[71] BPI Disease resistance
c.C1027A[72] TLR4 Salmonella shedding
c.8C>G[73] PSMB6 Immunological traits
c.144T>C[74] BCL10 Immunological traits
Tab.1  Putative functional SNPs for economically important traits in pigs
Fig.1  Base editing mediated gene pyramiding in pigs for breeding. The efficiency and accuracy in the editing of pig genome is greatly enhanced with the gene editing tools of HR to CRISPR and Base Editor and this makes it feasible to integrate merit alleles in one breed for improved production performance.
1 H S Park, B Min, S H Oh. Research trends in outdoor pig production—a review. Asian-Australasian Journal of Animal Sciences, 2017, 30(9): 1207–1214
https://doi.org/10.5713/ajas.17.0330 pmid: 28728401
2 M A M Groenen, A L Archibald, H Uenishi, C K Tuggle, Y Takeuchi, M F Rothschild, C Rogel-Gaillard, C Park, D Milan, H J Megens, S Li, D M Larkin, H Kim, L A F Frantz, M Caccamo, H Ahn, B L Aken, A Anselmo, C Anthon, L Auvil, B Badaoui, C W Beattie, C Bendixen, D Berman, F Blecha, J Blomberg, L Bolund, M Bosse, S Botti, Z Bujie, M Bystrom, B Capitanu, D Carvalho-Silva, P Chardon, C Chen, R Cheng, S H Choi, W Chow, R C Clark, C Clee, R P M A Crooijmans, H D Dawson, P Dehais, F De Sapio, B Dibbits, N Drou, Z Q Du, K Eversole, J Fadista, S Fairley, T Faraut, G J Faulkner, K E Fowler, M Fredholm, E Fritz, J G R Gilbert, E Giuffra, J Gorodkin, D K Griffin, J L Harrow, A Hayward, K Howe, Z L Hu, S J Humphray, T Hunt, H Hornshøj, J T Jeon, P Jern, M Jones, J Jurka, H Kanamori, R Kapetanovic, J Kim, J H Kim, K W Kim, T H Kim, G Larson, K Lee, K T Lee, R Leggett, H A Lewin, Y Li, W Liu, J E Loveland, Y Lu, J K Lunney, J Ma, O Madsen, K Mann, L Matthews, S McLaren, T Morozumi, M P Murtaugh, J Narayan, D Truong Nguyen, P Ni, S J Oh, S Onteru, F Panitz, E W Park, H S Park, G Pascal, Y Paudel, M Perez-Enciso, R Ramirez-Gonzalez, J M Reecy, S Rodriguez-Zas, G A Rohrer, L Rund, Y Sang, K Schachtschneider, J G Schraiber, J Schwartz, L Scobie, C Scott, S Searle, B Servin, B R Southey, G Sperber, P Stadler, J V Sweedler, H Tafer, B Thomsen, R Wali, J Wang, J Wang, S White, X Xu, M Yerle, G Zhang, J Zhang, J Zhang, S Zhao, J Rogers, C Churcher, L B Schook. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491(7424): 393–398
https://doi.org/10.1038/nature11622 pmid: 23151582
3 K Chen, T Baxter, W M Muir, M A Groenen, L B Schook. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). International Journal of Biological Sciences, 2007, 3(3): 153–165
https://doi.org/10.7150/ijbs.3.153 pmid: 17384734
4 H Gilbert, Y Billon, L Brossard, J Faure, P Gatellier, F Gondret, E Labussière, B Lebret, L Lefaucheur, N Le Floch, I Louveau, E Merlot, M C Meunier-Salaün, L Montagne, P Mormede, D Renaudeau, J Riquet, C Rogel-Gaillard, J van Milgen, A Vincent, J Noblet. Review: divergent selection for residual feed intake in the growing pig. Animal, 2017, 11(9): 1427–1439
https://doi.org/10.1017/S175173111600286X pmid: 28118862
5 M E Goddard, B J Hayes. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews: Genetics, 2009, 10(6): 381–391
https://doi.org/10.1038/nrg2575 pmid: 19448663
6 R E Hammer, V G Pursel, C E Rexroad Jr, R J Wall, D J Bolt, K M Ebert, R D Palmiter, R L Brinster. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315(6021): 680–683
https://doi.org/10.1038/315680a0 pmid: 3892305
7 M R Capecchi. Altering the genome by homologous recombination. Science, 1989, 244(4910): 1288–1292
https://doi.org/10.1126/science.2660260 pmid: 2660260
8 I Wilmut, A E Schnieke, J McWhir, A J Kind, K H S Campbell. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810–813
https://doi.org/10.1038/385810a0 pmid: 9039911
9 D Yang, H Yang, W Li, B Zhao, Z Ouyang, Z Liu, Y Zhao, N Fan, J Song, J Tian, F Li, J Zhang, L Chang, D Pei, Y E Chen, L Lai. Generation of PPARg mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Research, 2011, 21(6): 979–982
https://doi.org/10.1038/cr.2011.70 pmid: 21502977
10 H I Ahmad, M J Ahmad, A R Asif, M Adnan, M K Iqbal, K Mehmood, S A Muhammad, A A Bhuiyan, A Elokil, X Du, C Zhao, X Liu, S Xie. A review of CRISPR-based genome editing: survival, evolution and challenges. Current Issues in Molecular Biology, 2018, 28: 47–68
https://doi.org/10.21775/cimb.028.047 pmid: 29428910
11 Y Yang, S Liu, Y Cheng, L Nie, C Lv, G Wang, Y Zhang, L Hao. Highly efficient and rapid detection of the cleavage activity of Cas9/gRNA via a fluorescent reporter. Applied Biochemistry and Biotechnology, 2016, 180(4): 655–667
https://doi.org/10.1007/s12010-016-2122-8 pmid: 27209600
12 J J Whyte, J Zhao, K D Wells, M S Samuel, K M Whitworth, E M Walters, M H Laughlin, R S Prather. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Molecular Reproduction and Development, 2011, 78(1): 2
https://doi.org/10.1002/mrd.21271 pmid: 21268178
13 X J Huang, H X Zhang, H Wang, K Xiong, L Qin, H Liu. Disruption of the myostatin gene in porcine primary fibroblasts and embryos using zinc-finger nucleases. Molecules and Cells, 2014, 37(4): 302–306
https://doi.org/10.14348/molcells.2014.2209 pmid: 24802055
14 Y Yin, H Hao, X Xu, L Shen, W Wu, J Zhang, Q Li. Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology. Lipids in Health and Disease, 2019, 18(1): 122
https://doi.org/10.1186/s12944-019-1073-9 pmid: 31138220
15 W Yang, S Li, X J Li. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Molecular Neurodegeneration, 2019, 14(1): 17
https://doi.org/10.1186/s13024-019-0321-9 pmid: 31046796
16 D Paquet, D Kwart, A Chen, A Sproul, S Jacob, S Teo, K M Olsen, A Gregg, S Noggle, M Tessier-Lavigne. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 2016, 533(7601): 125–129
https://doi.org/10.1038/nature17664 pmid: 27120160
17 K M Whitworth, K Lee, J A Benne, B P Beaton, L D Spate, S L Murphy, M S Samuel, J Mao, C O’Gorman, E M Walters, C N Murphy, J Driver, A Mileham, D McLaren, K D Wells, R S Prather. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biology of Reproduction, 2014, 91(3): 78
https://doi.org/10.1095/biolreprod.114.121723 pmid: 25100712
18 K M Whitworth, R R R Rowland, C L Ewen, B R Trible, M A Kerrigan, A G Cino-Ozuna, M S Samuel, J E Lightner, D G McLaren, A J Mileham, K D Wells, R S Prather. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 2016, 34(1): 20–22
https://doi.org/10.1038/nbt.3434 pmid: 26641533
19 G Xiang, J Ren, T Hai, R Fu, D Yu, J Wang, W Li, H Wang, Q Zhou. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cellular and Molecular Life Sciences, 2018, 75(24): 4619–4628
https://doi.org/10.1007/s00018-018-2917-6 pmid: 30259067
20 Q Zheng, J Lin, J Huang, H Zhang, R Zhang, X Zhang, C Cao, C Hambly, G Qin, J Yao, R Song, Q Jia, X Wang, Y Li, N Zhang, Z Piao, R Ye, J R Speakman, H Wang, Q Zhou, Y Wang, W Jin, J Zhao. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45): E9474–E9482
https://doi.org/10.1073/pnas.1707853114 pmid: 29078316
21 Z Xie, D Pang, H Yuan, H Jiao, C Lu, K Wang, Q Yang, M Li, X Chen, T Yu, X Chen, Z Dai, Y Peng, X Tang, Z Li, T Wang, H Guo, L Li, C Tu, L Lai, H Ouyang. Genetically modified pigs are protected from classical swine fever virus. PLoS Pathogens, 2018, 14(12): e1007193
https://doi.org/10.1371/journal.ppat.1007193 pmid: 30543715
22 A Oladzad, T Porch, J C Rosas, S M Moghaddam, J Beaver, S E Beebe, J Burridge, C N Jochua, M A Miguel, P N Miklas, B Ratz, J W White, J Lynch, P E McClean. Single and multi-trait GWAS identify genetic factors associated with production traits in common bean under abiotic stress environments. Genetics, 2019, 9(6): 1881–1892
pmid: 31167806
23 S Yang, X Li, K Li, B Fan, Z Tang. A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. BMC Genetics, 2014, 15(1): 7
https://doi.org/10.1186/1471-2156-15-7 pmid: 24422716
24 L Silió, C Barragán, A I Fernández, J García-Casco, M C Rodríguez. Assessing effective population size, coancestry and inbreeding effects on litter size using the pedigree and SNP data in closed lines of the Iberian pig breed. Journal of Animal Breeding and Genetics, 2016, 133(2): 145–154
https://doi.org/10.1111/jbg.12168 pmid: 26059912
25 B Servin, T Faraut, N Iannuccelli, D Zelenika, D Milan. High-resolution autosomal radiation hybrid maps of the pig genome and their contribution to the genome sequence assembly. BMC Genomics, 2012, 13(1): 585
https://doi.org/10.1186/1471-2164-13-585 pmid: 23153393
26 K T Lee, Y M Lee, M Alam, B H Choi, M R Park, K S Kim, T H Kim, J J Kim. A whole genome association study on meat quality traits using high density SNP chips in a cross between Korean native pig and Landrace. Asian-Australasian Journal of Animal Sciences, 2012, 25(11): 1529–1539
https://doi.org/10.5713/ajas.2012.12474 pmid: 25049513
27 X Ma, P H Li, M X Zhu, L C He, S P Sui, S Gao, G S Su, N S Ding, Y Huang, Z Q Lu, X G Huang, R H Huang. Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal, 2018, 12(12): 2453–2461
https://doi.org/10.1017/S1751731118000332 pmid: 29534777
28 A S Hess, Z Islam, M K Hess, R R R Rowland, J K Lunney, A Doeschl-Wilson, G S Plastow, J C M Dekkers. Comparison of host genetic factors influencing pig response to infection with two North American isolates of porcine reproductive and respiratory syndrome virus. Genetics, Selection, Evolution, 2016, 48(1): 43
https://doi.org/10.1186/s12711-016-0222-0 pmid: 27324857
29 L Andersson, C S Haley, H Ellegren, S A Knott, M Johansson, K Andersson, L Andersson-Eklund, I Edfors-Lilja, M Fredholm, I Hansson, J Håkansson. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science, 1994, 263(5154): 1771–1774
https://doi.org/10.1126/science.8134840 pmid: 8134840
30 P Uimari, A Sironen, M L Sevån-Aimonen. Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed. Genetics, Selection, Evolution, 2011, 43(1): 42
https://doi.org/10.1186/1297-9686-43-42 pmid: 22132733
31 P Sellier, L Maignel, J P Bidanel. Genetic parameters for tissue and fatty acid composition of backfat, perirenal fat and longissimus muscle in Large White and Landrace pigs. Animal, 2010, 4(4): 497–504
https://doi.org/10.1017/S1751731109991261 pmid: 22444036
32 J Hernández-Sánchez, M Amills, R N Pena, A Mercadé, A Manunza, R Quintanilla. Genomic architecture of heritability and genetic correlations for intramuscular and back fat contents in Duroc pigs. Journal of Animal Science, 2013, 91(2): 623–632
https://doi.org/10.2527/jas.2012-5270 pmid: 23230112
33 R Ding, M Yang, J Quan, S Li, Z Zhuang, S Zhou, E Zheng, L Hong, Z Li, G Cai, W Huang, Z Wu, J Yang. Single-locus and multi-locus genome-wide association studies for intramuscular fat in Duroc pigs. Frontiers in Genetics, 2019, 10: 619
https://doi.org/10.3389/fgene.2019.00619 pmid: 31316554
34 M Zappaterra, D Luise, P Zambonelli, M Mele, A Serra, L N Costa, R Davoli. Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs. Meat Science, 2019, 156: 75–84
https://doi.org/10.1016/j.meatsci.2019.05.013 pmid: 31132591
35 R N Pena, J L Noguera, M J García-Santana, E González, J F Tejeda, R Ros-Freixedes, N Ibáñez-Escriche. Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports, 2019, 9(1): 2031
https://doi.org/10.1038/s41598-019-38622-7 pmid: 30765794
36 S Casiró, D Velez-Irizarry, C W Ernst, N E Raney, R O Bates, M G Charles, J P Steibel. Genome-wide association study in an F2 Duroc x Pietrain resource population for economically important meat quality and carcass traits. Journal of Animal Science, 2017, 95(2): 545–558
https://doi.org/10.2527/jas2016.1003 pmid: 28380601
37 A S Van Laere, M Nguyen, M Braunschweig, C Nezer, C Collette, L Moreau, A L Archibald, C S Haley, N Buys, M Tally, G Andersson, M Georges, L Andersson. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 2003, 425(6960): 832–836
https://doi.org/10.1038/nature02064 pmid: 14574411
38 L Criado-Mesas, M Ballester, D Crespo-Piazuelo, A Castelló, R Benítez, A I Fernández, J M Folch. Analysis of porcine IGF2 gene expression in adipose tissue and its effect on fatty acid composition. PLoS One, 2019, 14(8): e0220708
https://doi.org/10.1371/journal.pone.0220708 pmid: 31393967
39 J Ma, J Yang, L Zhou, J Ren, X Liu, H Zhang, B Yang, Z Zhang, H Ma, X Xie, Y Xing, Y Guo, L Huang. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genetics, 2014, 10(10): e1004710
https://doi.org/10.1371/journal.pgen.1004710 pmid: 25340394
40 C S Bruun, C B Jørgensen, V H Nielsen, L Andersson, M Fredholm. Evaluation of the porcine melanocortin 4 receptor (MC4R) gene as a positional candidate for a fatness QTL in a cross between Landrace and Hampshire. Animal Genetics, 2006, 37(4): 359–362
https://doi.org/10.1111/j.1365-2052.2006.01488.x pmid: 16879346
41 C P Allison, R C Johnson, M E Doumit. The effects of halothane sensitivity on carcass composition and meat quality in HAL-1843-normal pigs. Journal of Animal Science, 2005, 83(3): 671–678
https://doi.org/10.2527/2005.833671x pmid: 15705764
42 S K Onteru, J W Ross, M F Rothschild. The role of gene discovery, QTL analyses and gene expression in reproductive traits in the pig. Society of Reproduction and Fertility Supplement, 2009, 66: 87–102
pmid: 19848272
43 Pig Quantitative Trait Locus (QTL) Database (Pig QTLdb). Pig QTL/associations data summary, 2019. Available at Pig QTLdb website on February 14, 2020
44 Y Wang, X Ding, Z Tan, K Xing, T Yang, Y Pan, Y Wang, D Sun, C Wang. Genome-wide association study for reproductive traits in a Large White pig population. Animal Genetics, 2018, 49(2): 127–131
https://doi.org/10.1111/age.12638 pmid: 29411893
45 M Bosse, H J Megens, L A F Frantz, O Madsen, G Larson, Y Paudel, N Duijvesteijn, B Harlizius, Y Hagemeijer, R P M A Crooijmans, M A M Groenen. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications, 2014, 5(1): 4392
https://doi.org/10.1038/ncomms5392 pmid: 25025832
46 D Bjerre, L B Madsen, T Mark, S Cirera, K Larsen, C B Jørgensen, M Fredholm. Potential role of the porcine superoxide dismutase 1 (SOD1) gene in pig reproduction. Animal Biotechnology, 2013, 24(1): 1–9
https://doi.org/10.1080/10495398.2012.723083 pmid: 23394364
47 N Boddicker, E H Waide, R R R Rowland, J K Lunney, D J Garrick, J M Reecy, J C M Dekkers. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. Journal of Animal Science, 2012, 90(6): 1733–1746
https://doi.org/10.2527/jas.2011-4464 pmid: 22205662
48 N J Boddicker, D J Garrick, R R R Rowland, J K Lunney, J M Reecy, J C M Dekkers. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Animal Genetics, 2014, 45(1): 48–58
https://doi.org/10.1111/age.12079 pmid: 23914972
49 N J Boddicker, A Bjorkquist, R R R Rowland, J K Lunney, J M Reecy, J C M Dekkers. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genetics, Selection, Evolution, 2014, 46(1): 18
https://doi.org/10.1186/1297-9686-46-18 pmid: 24592976
50 N V L Serão, R A Kemp, B E Mote, P Willson, J C S Harding, S C Bishop, G S Plastow, J C M Dekkers. Genetic and genomic basis of antibody response to porcine reproductive and respiratory syndrome (PRRS) in gilts and sows. Genetics, Selection, Evolution, 2016, 48(1): 51
https://doi.org/10.1186/s12711-016-0230-0 pmid: 27417876
51 C Burkard, S G Lillico, E Reid, B Jackson, A J Mileham, T Ait-Ali, C B Whitelaw, A L Archibald. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens, 2017, 13(2): e1006206
https://doi.org/10.1371/journal.ppat.1006206 pmid: 28231264
52 P Skallerup, S M Thamsborg, C B Jørgensen, H Mejer, H H Göring, A L Archibald, M Fredholm, P Nejsum. Detection of a quantitative trait locus associated with resistance to infection with Trichuris suis in pigs. Veterinary Parasitology, 2015, 210(3–4): 264–269
https://doi.org/10.1016/j.vetpar.2015.03.014 pmid: 25858116
53 J Estellé, A I Fernández, M Pérez-Enciso, A Fernández, C Rodríguez, A Sánchez, J L Noguera, J M Folch. A non-synonymous mutation in a conserved site of the MTTP gene is strongly associated with protein activity and fatty acid profile in pigs. Animal Genetics, 2009, 40(6): 813–820
https://doi.org/10.1111/j.1365-2052.2009.01922.x pmid: 19496770
54 B J Jungerius, A S van Laere, M F Te Pas, B A van Oost, L Andersson, M A Groenen. The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan x European white pig intercross. Genetical Research, 2004, 84(2): 95–101
https://doi.org/10.1017/S0016672304007098 pmid: 15678747
55 Q Yin, H W Yang, X L Han, B Fan, B Liu. Isolation, mapping, SNP detection and association with backfat traits of the porcine CTNNBL1 and DGAT2 genes. Molecular Biology Reports, 2012, 39(4): 4485–4490
https://doi.org/10.1007/s11033-011-1238-8 pmid: 21997828
56 Z G Chen, Z X Ma, B Zuo, M G Lei, Y Z Xiong. Molecular characterization and association with carcass traits of the porcine SLC39A7 gene. Journal of Animal Breeding and Genetics, 2009, 126(4): 288–295
https://doi.org/10.1111/j.1439-0388.2008.00740.x pmid: 19630879
57 L Fontanesi, E Scotti, L Buttazzoni, S Dall’Olio, R Davoli, V Russo. A single nucleotide polymorphism in the porcine cathepsin K (CTSK) gene is associated with back fat thickness and production traits in Italian Duroc pigs. Molecular Biology Reports, 2010, 37(1): 491–495
https://doi.org/10.1007/s11033-009-9678-0 pmid: 19662513
58 E Muráni, M Murániová, S Ponsuksili, K Schellander, K Wimmers. Molecular characterization and evidencing of the porcine CRH gene as a functional-positional candidate for growth and body composition. Biochemical and Biophysical Research Communications, 2006, 342(2): 394–405
https://doi.org/10.1016/j.bbrc.2006.01.143 pmid: 16483545
59 M Ballester, M Revilla, A Puig-Oliveras, J A Marchesi, A Castelló, J Corominas, A I Fernández, J M Folch. Analysis of the porcine APOA2 gene expression in liver, polymorphism identification and association with fatty acid composition traits. Animal Genetics, 2016, 47(5): 552–559
https://doi.org/10.1111/age.12462 pmid: 27296287
60 L Fontanesi, F Bertolini, S Dall’Olio, L Buttazzoni, M Gallo, V Russo. Analysis of association between the MUC4 g.8227C>G polymorphism and production traits in Italian heavy pigs using a selective genotyping approach. Animal Biotechnology, 2012, 23(3): 147–155
https://doi.org/10.1080/10495398.2011.653462 pmid: 22870870
61 K Hirose, T Takizawa, K Fukawa, T Ito, M Ueda, Y Hayashi, K Tanaka. Association of an SNP marker in exon 24 of a class 3 phosphoinositide-3-kinase (PIK3C3) gene with production traits in Duroc pigs. Animal Science Journal, 2011, 82(1): 46–51
https://doi.org/10.1111/j.1740-0929.2010.00816.x pmid: 21269358
62 S M An, J H Hwang, S Kwon, G E Yu, D H Park, D G Kang, T W Kim, H C Park, J Ha, C W Kim. Effect of single nucleotide polymorphisms in IGFBP2 and IGFBP3 genes on litter size traits in Berkshire pigs. Animal Biotechnology, 2018, 29(4): 301–308
https://doi.org/10.1080/10495398.2017.1395345 pmid: 29200313
63 A Gunawan, M U Cinar, M J Uddin, K Kaewmala, D Tesfaye, C Phatsara, E Tholen, C Looft, K Schellander. Investigation on association and expression of ESR2 as a candidate gene for boar sperm quality and fertility. Reproduction in Domestic Animals, 2012, 47(5): 782–790
https://doi.org/10.1111/j.1439-0531.2011.01968.x pmid: 22212297
64 K Kaewmala, M J Uddin, M U Cinar, C Große-Brinkhaus, E Jonas, D Tesfaye, C Phatsara, E Tholen, C Looft, K Schellander. Investigation into association and expression of PLCz and COX-2 as candidate genes for boar sperm quality and fertility. Reproduction in Domestic Animals, 2012, 47(2): 213–223
https://doi.org/10.1111/j.1439-0531.2011.01831.x pmid: 21752105
65 K Kaewmala, M J Uddin, M U Cinar, C Grosse-Brinkhaus, E Jonas, D Tesfaye, C Phatsara, E Tholen, C Looft, K Schellander. Association study and expression analysis of CD9 as candidate gene for boar sperm quality and fertility traits. Animal Reproduction Science, 2011, 125(1–4): 170–179
https://doi.org/10.1016/j.anireprosci.2011.02.017 pmid: 21398056
66 S J Wang, W J Liu, C A Sargent, S H Zhao, H B Liu, X D Liu, C Wang, G H Hua, L G Yang, N A Affara, S J Zhang. Effects of the polymorphisms of Mx1, BAT2 and CXCL12 genes on immunological traits in pigs. Molecular Biology Reports, 2012, 39(3): 2417–2427
https://doi.org/10.1007/s11033-011-0992-y pmid: 21667240
67 N Sun, D Liu, H Chen, X Liu, F Meng, X Zhang, H Chen, S Xie, X Li, Z Wu. Localization, expression change in PRRSV infection and association analysis of the porcine TAP1 gene. International Journal of Biological Sciences, 2012, 8(1): 49–58
https://doi.org/10.7150/ijbs.8.49 pmid: 22211104
68 Y Sang, C R Ross, R R Rowland, F Blecha. Toll-like receptor 3 activation decreases porcine arterivirus infection. Viral Immunology, 2008, 21(3): 303–314
https://doi.org/10.1089/vim.2008.0042 pmid: 18788939
69 A J Brock, O Matika, A D Wilson, J Anderson, A C Morin, H A Finlayson, G Reiner, H Willems, S C Bishop, A L Archibald, T Ait-Ali. An intronic polymorphism in the porcine IRF7 gene is associated with better health and immunity of the host during Sarcocystis infection, and affects interferon signalling. Animal Genetics, 2011, 42(4): 386–394
https://doi.org/10.1111/j.1365-2052.2010.02154.x pmid: 21749421
70 Y Liu, Y R Luo, X Lu, X T Qiu, J P Zhou, Y F Gong, X D Ding, Q Zhang. Association analysis of polymorphisms of porcine LMP2 and LMP7 genes with haematological traits. Molecular Biology Reports, 2011, 38(7): 4455–4460
https://doi.org/10.1007/s11033-010-0574-4 pmid: 21140225
71 Z C Wu, Y Liu, Q H Zhao, S P Zhu, Y J Huo, G Q Zhu, S L Wu, W B Bao. Association between polymorphisms in exons 4 and 10 of the BPI gene and immune indices in Sutai pigs. Genetics and Molecular Research, 2015, 14(2): 6048–6058
https://doi.org/10.4238/2015.June.8.2 pmid: 26125805
72 J D Kich, J J Uthe, M V Benavides, M E Cantão, R Zanella, C K Tuggle, S M Bearson. TLR4 single nucleotide polymorphisms (SNPs) associated with Salmonella shedding in pigs. Journal of Applied Genetics, 2014, 55(2): 267–271
https://doi.org/10.1007/s13353-014-0199-8 pmid: 24566961
73 X Wu, Y Wang, Y Sun. Molecular characterization, expression analysis and association study with immune traits of porcine PSMB6 gene. Molecular Biology Reports, 2011, 38(8): 5465–5470
https://doi.org/10.1007/s11033-011-0866-3 pmid: 21604174
74 J Huang, G J Ma, N N Sun, Z F Wu, X Y Li, S H Zhao. BCL10 as a new candidate gene for immune response in pigs: cloning, expression and association analysis. International Journal of Immunogenetics, 2010, 37(2): 103–110
https://doi.org/10.1111/j.1744-313X.2010.00898.x pmid: 20193035
75 J R Butler, R M N Santos, G R Martens, J M Ladowski, Z Y Wang, P Li, M Tector, A J Tector. Efficient generation of targeted and controlled mutational events in porcine cells using nuclease-directed homologous recombination. Journal of Surgical Research, 2017, 212: 238–245
https://doi.org/10.1016/j.jss.2017.01.025 pmid: 28550913
76 L Tao, M Yang, X Wang, Z Zhang, Z Wu, J Tian, L An, S Wang. Efficient biallelic mutation in porcine parthenotes using a CRISPR-Cas9 system. Biochemical and Biophysical Research Communications, 2016, 476(4): 225–229
https://doi.org/10.1016/j.bbrc.2016.05.100 pmid: 27221047
77 C Yue, W L Bai, Y Y Zheng, T Y Hui, J M Sun, D Guo, S L Guo, Z Y Wang. Correlation analysis of candidate gene SNP for high-yield in Liaoning cashmere goats with litter size and cashmere performance. Animal Biotechnology, 2019 [Published Online] doi: 10.1080/10495398.2019.1652188
pmid: 31424321
78 J R Chapman, M R G Taylor, S J Boulton. Playing the end game: DNA double-strand break repair pathway choice. Molecular Cell, 2012, 47(4): 497–510
https://doi.org/10.1016/j.molcel.2012.07.029 pmid: 22920291
79 D B T Cox, R J Platt, F Zhang. Therapeutic genome editing: prospects and challenges. Nature Medicine, 2015, 21(2): 121–131
https://doi.org/10.1038/nm.3793 pmid: 25654603
80 S Q Tsai, Z Zheng, N T Nguyen, M Liebers, V V Topkar, V Thapar, N Wyvekens, C Khayter, A J Iafrate, L P Le, M J Aryee, J K Joung. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology, 2015, 33(2): 187–197
https://doi.org/10.1038/nbt.3117 pmid: 25513782
81 H Y Shin, C Wang, H K Lee, K H Yoo, X Zeng, T Kuhns, C M Yang, T Mohr, C Liu, L Hennighausen. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nature Communications, 2017, 8(1): 15464
https://doi.org/10.1038/ncomms15464 pmid: 28561021
82 M Kosicki, K Tomberg, A Bradley. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 2018, 36(8): 765–771
https://doi.org/10.1038/nbt.4192 pmid: 30010673
83 J M Gehrke, O Cervantes, M K Clement, Y Wu, J Zeng, D E Bauer, L Pinello, J K Joung. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nature Biotechnology, 2018, 36(10): 977–982
https://doi.org/10.1038/nbt.4199 pmid: 30059493
84 H A Rees, D R Liu. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews: Genetics, 2018, 19(12): 770–788
https://doi.org/10.1038/s41576-018-0059-1 pmid: 30323312
85 R Dandage, P C Després, N Yachie, C R Landry. beditor: a computational workflow for designing libraries of guide RNAs for CRISPR-mediated base editing. Genetics, 2019, 212(2): 377–385
https://doi.org/10.1534/genetics.119.302089 pmid: 30936113
86 A C Komor, Y B Kim, M S Packer, J A Zuris, D R Liu. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420–424
https://doi.org/10.1038/nature17946 pmid: 27096365
87 A C Komor, K T Zhao, M S Packer, N M Gaudelli, A L Waterbury, L W Koblan, Y B Kim, A H Badran, D R Liu. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances, 2017, 3(8): eaao4774
88 Y Zong, Q Song, C Li, S Jin, D Zhang, Y Wang, J L Qiu, C Gao. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 2018, 36(10): 950–953
https://doi.org/10.1038/nbt.4261 pmid: 30272679
89 L W Koblan, J L Doman, C Wilson, J M Levy, T Tay, G A Newby, J P Maianti, A Raguram, D R Liu. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 2018, 36(9): 843–846
https://doi.org/10.1038/nbt.4172 pmid: 29813047
90 Y B Kim, A C Komor, J M Levy, M S Packer, K T Zhao, D R Liu. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology, 2017, 35(4): 371–376
https://doi.org/10.1038/nbt.3803 pmid: 28191901
91 K Hua, X Tao, J K Zhu. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnology Journal, 2019, 17(2): 499–504
https://doi.org/10.1111/pbi.12993 pmid: 30051586
92 J H Hu, S M Miller, M H Geurts, W Tang, L Chen, N Sun, C M Zeina, X Gao, H A Rees, Z Lin, D R Liu. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556(7699): 57–63
https://doi.org/10.1038/nature26155 pmid: 29512652
93 H Nishimasu, X Shi, S Ishiguro, L Gao, S Hirano, S Okazaki, T Noda, O O Abudayyeh, J S Gootenberg, H Mori, S Oura, B Holmes, M Tanaka, M Seki, H Hirano, H Aburatani, R Ishitani, M Ikawa, N Yachie, F Zhang, O Nureki. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 2018, 361(6408): 1259–1262
https://doi.org/10.1126/science.aas9129 pmid: 30166441
94 N M Gaudelli, A C Komor, H A Rees, M S Packer, A H Badran, D I Bryson, D R Liu. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464–471
https://doi.org/10.1038/nature24644 pmid: 29160308
95 T P Huang, K T Zhao, S M Miller, N M Gaudelli, B L Oakes, C Fellmann, D F Savage, D R Liu. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nature Biotechnology, 2019, 37(6): 626–631
https://doi.org/10.1038/s41587-019-0134-y pmid: 31110355
96 K Hua, X Tao, P Han, R Wang, J K Zhu. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Molecular Plant, 2019, 12(7): 1003–1014
https://doi.org/10.1016/j.molp.2019.03.009 pmid: 30928636
97 P Chatterjee, N Jakimo, J M Jacobson. Minimal PAM specificity of a highly similar SpCas9 ortholog. Science Advcances, 2018, 4(10): eaau0766
98 A V Anzalone, P B Randolph, J R Davis, A A Sousa, L W Koblan, J M Levy, P J Chen, C Wilson, G A Newby, A Raguram, D R Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
https://doi.org/10.1038/s41586-019-1711-4 pmid: 31634902
99 R Zhang, Y Wang, L Chen, R Wang, C Li, X Li, B Fang, X Ren, M Ruan, J Liu, Q Xiong, L Zhang, Y Jin, M Zhang, X Liu, L Li, Q Chen, D Pan, R Li, D K C Cooper, H Yang, Y Dai. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomaterialia, 2018, 72: 196–205
https://doi.org/10.1016/j.actbio.2018.03.055 pmid: 29631050
100 H M Yuan, T T Yu, L Y Wang, L Yang, Y Z Zhang, H Liu, M J Li, X C Tang, Z Q Liu, Z J Li, C Lu, X Chen, D X Pang, H S Ouyang. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs. Cellular and Molecular Life Sciences, 2019 [Published Online] doi: 10.1007/s00018-019-03205-2
pmid: 31302752
101 J Xie, W Ge, N Li, Q Liu, F Chen, X Yang, X Huang, Z Ouyang, Q Zhang, Y Zhao, Z Liu, S Gou, H Wu, C Lai, N Fan, Q Jin, H Shi, Y Liang, T Lan, L Quan, X Li, K Wang, L Lai. Efficient base editing for multiple genes and loci in pigs using base editors. Nature Communications, 2019, 10(1): 2852
https://doi.org/10.1038/s41467-019-10421-8 pmid: 31253764
102 Z Li, X Duan, X An, T Feng, P Li, L Li, J Liu, P Wu, D Pan, X Du, S Wu. Efficient RNA-guided base editing for disease modeling in pigs. Cell Discovery, 2018, 4(1): 64
https://doi.org/10.1038/s41421-018-0065-7 pmid: 30588328
103 K A Molla, Y Yang. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends in Biotechnology, 2019, 37(10): 1121–1142
https://doi.org/10.1016/j.tibtech.2019.03.008 pmid: 30995964
104 E Zuo, Y Sun, W Wei, T Yuan, W Ying, H Sun, L Yuan, L M Steinmetz, Y Li, H Yang. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019, 364(6437): 289–292
https://doi.org/10.1126/science.aav9973 pmid: 30819928
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn