Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  学科浏览  |  专题文章  |  热点文章  |  下载排行
Frontiers of Agricultural Science and Engineering    2020, Vol. 7 Issue (2) : 188-203     https://doi.org/10.15302/J-FASE-2019307
REVIEW
Regulatory issues for genetically modified animals
Perry Bradbury HACKETT()
Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
全文: PDF(2618 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Precision genetics and breeding have the potential to meet the agricultural needs and goals of the world in the 21st century. These needs include increasing the efficiency of production of animals and improving their products with minimal impact on the environment. The USA is the major innovator in genomic science and the acknowledged leader in formulating policies to regulate genetic applications in medicine and agriculture. However, governments worldwide have been exceedingly reluctant to support the introduction of genetically modified (GM) animals into agriculture. Regulatory policies have stagnated due to legal guidelines that could not anticipate the needs and solutions that are evident today. This must change if we are to maintain planetary integrity. I propose a new, market-based regulatory model for GM livestock that has both a strong scientific foundation and has worked for 10000 years. The model is similar to that for information technology in which specific algorithms drive computer and cell phone applications. Genome engineers write genetic algorithms that drive the traits in biological organisms. Accordingly, GM products should be viewed in terms of their use and public benefit rather than by limitations to the genetic programing coming from a few highly vocal groups. Genetic algorithms (Genapps) of the 21st century will include not only introduction of synthetic genes, but also complete natural and synthetic biochemical pathways to produce agricultural products that are maximally efficient, healthy to humans and animals, and sustainable in an era of changing climates while avoiding environmental degradation.

Keywords algorithms      editing      FDA      GMO      recombinant DNA      USDA     
最新录用日期:    在线预览日期:    发布日期: 2020-04-28
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Perry Bradbury HACKETT
引用本文:   
Perry Bradbury HACKETT. Regulatory issues for genetically modified animals[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 188-203.
网址:  
https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2019307     OR     https://journal.hep.com.cn/fase/EN/Y2020/V7/I2/188
Fig.1  (a) Norman Borlaug (source: University of Minnesota with permission). (b) Yields of major coarse grains showing all grains except corn/maize (red line) with a best fit quadratic and total yields of corn/maize (green line) that is used predominantly for production of ethanol, feed for livestock, and high fructose corn syrup. The orange line shows the averaging of yields when corn is added to the other grains. (Graph is provided by Dr. Deepak Ray[2] with permission).
Fig.2  The world is changing. (a) World population and atmospheric CO2 levels, adapted from Kaplan et al.[11]. (b) Projections of global daily caloric intake per person and global energy usage, adapted from Graham-Rowe[12].
Fig.3  Models for regulation of genetically modified (GM) animals. (a) Proposed regulatory pathway. Producers sell GM animals to breeders who then sell to farmers and ranchers with minimal governmental registration to assure the public that the products are transparent. The outcomes are evaluated by the public markets. Good products are amplified as sales increase; if a bad product enters the market, correction is swift. (b) Current regulatory pathway. GM animals must pass review by government regulators before release to consumers. The criteria for passage are ill-defined, slow to change and hence expensive, time-consuming and uncertain. The result has been few new products, no new improvements and citizen uncertainty about safety.
Fig.4  Algorithm-based applications drive progress. (a) Evolution of the iPhone over a decade. (b) Exponential growth in applications for the iPhone over 11 years (adapted from Statista[44], © Statista 2020). (c) Imaginary icon showing biological apps based on genetic algorithms.
Fig.5  Regulatory overlap of GM organisms by U.S. agencies.
Fig.6  Contribution of GM crops to world agriculture and the U.S. economy. (a) The steady adoption over the past 20 years of GM crops worldwide (source: International Service for the Acquisition of Agri-Biotech Applications (ISAAA)[61]). (b) U.S. biotechnology revenues (extrapolated) from 1980 to 2017 based on Carlson[62]. The bars are data, while shaded areas are a numerical model pinned at 0 USD revenues in 1980 (1996 for GM crops).
Fig.7  Example of a classical Antennapedia[67] developmental mutant found from X-ray mutagenesis of Drosophila melanogaster. (source: CC BY SA 3.0).
Fig.8  The futile cycle of risk assessment of GM animals. Regulatory agencies put out Requests for Applications to solve complex problems. Scientists write proposals in which a complex problem is broken down into specific sub-problems that can be studied in a laboratory environment where in as many variables as possible are controlled to ensure reproducibility. The results of the studies are published in elite journals because the problems they address are important[126]. However, the experimental constraints of budgets, numbers of subjects, and control of environmental variables limit the applicability of the results to real-world issues. Hence, the problems remain unsolved for another cycle of inconclusive experimentation.
1 N Borlaug. Feeding a hungry world. Science, 2007, 318(5849): 359
https://doi.org/10.1126/science.1151062 pmid: 17947551
2 D K Ray, N D Mueller, P C West, J A Foley. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8(6): e66428
https://doi.org/10.1371/journal.pone.0066428 pmid: 23840465
3 P L Pingali. Green Revolution: impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences of the United States, 2012, 109(31): 12302–12308
https://doi.org/10.1073/pnas.0912953109 pmid: 22826253
4 N Borlaug. Blasts GMO Doomsayers. Available at AgriBioWorld website on February 20, 2020
5 Food and Agriculture Organization of the United Nations (FAO). How to Feed the World in 2050. Rome: FAO, 2009. Available at FAO website on February 20, 2020
6 United Nations. Food Production Must Double by 2050 to Meet Demand from World’s Growing Population, Innovative Strategies Needed to Combat Hunger, Experts Tell Second Committee, 2009. Available at United Nations website on February 20, 2020
7 The National Academies Press (NAS). Science breakthroughs to advance food and agricultural research by 2030. Washington, DC: The National Academies Press, 2019. Available at NAP website on February 20, 2020
8 H C J Godfray, J R Beddington, I R Crute, L Haddad, D Lawrence, J F Muir, J Pretty, S Robinson, S M Thomas, C Toulmin. Food security: the challenge of feeding 9 billion people. Science, 2010, 327(5967): 812–818
https://doi.org/10.1126/science.1185383 pmid: 20110467
9 A Y Hoekstra, T O Wiedmann. Humanity’s unsustainable environmental footprint. Science, 2014, 344(6188): 1114–1117
https://doi.org/10.1126/science.1248365 pmid: 24904155
10 J Bailey-Serres, J E Parker, E A Ainsworth, G E D Oldroyd, J I Schroeder. Genetic strategies for improving crop yields. Nature, 2019, 575(7781): 109–118
https://doi.org/10.1038/s41586-019-1679-0 pmid: 31695205
11 J O Kaplan, K M Krumhardt, E C Ellis, W F Ruddiman, C Lemmen, K K Goldewijk. Holocene carbon emissions: a result of anthropogenic land cover change. Holocene, 2011, 21(5): 775–791
https://doi.org/10.1177/0959683610386983
12 D Graham-Rowe. Agriculture: beyond food versus fuel. Nature, 2011, 474(7352): S6–S8
https://doi.org/10.1038/474S06a pmid: 21697842
13 G Conway, G Toenniessen. Feeding the world in the twenty-first century. Nature, 1999, 402(S6761): C55–C58
https://doi.org/10.1038/35011545 pmid: 10591226
14 M R W Rands, W M Adams, L Bennun, S H M Butchart, A Clements, D Coomes, A Entwistle, I Hodge, V Kapos, J P W Scharlemann, W J Sutherland, B Vira. Biodiversity conservation: challenges beyond 2010. Science, 2010, 329(5997): 1298–1303
https://doi.org/10.1126/science.1189138 pmid: 20829476
15 U Büntgen, W Tegel, K Nicolussi, M McCormick, D Frank, V Trouet, J O Kaplan, F Herzig, K U Heussner, H Wanner, J Luterbacher, J Esper. 2500 years of European climate variability and human susceptibility. Science, 2011, 331(6017): 578–582
https://doi.org/10.1126/science.1197175 pmid: 21233349
16 S A Marcott, J D Shakun, P U Clark, A C Mix. A reconstruction of regional and global temperature for the past 11300 years. Science, 2013, 339(6124): 1198–1201
https://doi.org/10.1126/science.1228026 pmid: 23471405
17 Y Eshed, Z B Lippman. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science, 2019, 366(6466): eaax0025
18 L N Phelps, J O Kaplan. Land use for animal production in global change studies: defining and characterizing a framework. Global Change Biology, 2017, 23(11): 4457–4471
https://doi.org/10.1111/gcb.13732 pmid: 28434200
19 J Sachs, R Remans, S Smukler, L Winowiecki, S J Andelman, K G Cassman, D Castle, R DeFries, G Denning, J Fanzo, L E Jackson, R Leemans, J Lehmann, J C Milder, S Naeem, G Nziguheba, C A Palm, P L Pingali, J P Reganold, D D Richter, S J Scherr, J Sircely, C Sullivan, T P Tomich, P A Sanchez. Monitoring the world’s agriculture. Nature, 2010, 466(7306): 558–560
https://doi.org/10.1038/466558a pmid: 20671691
20 R Anastácio, M J Pereira. From the challenges imposed by climate change to the preservation of ecosystem processes and services. Natural Resources, 2017, 8(12): 788–807
https://doi.org/10.4236/nr.2017.812048
21 H Kim, J S Kim. A guide to genome engineering with programmable nucleases. Nature Reviews: Genetics, 2014, 15(5): 321–334
https://doi.org/10.1038/nrg3686 pmid: 24690881
22 A V Anzalone, P B Randolph, J R Davis, A A Sousa, L W Koblan, J M Levy, P J Chen, C Wilson, G A Newby, A Raguram, D R Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
https://doi.org/10.1038/s41586-019-1711-4 pmid: 31634902
23 M Tizard, E Hallerman, S Fahrenkrug, M Newell-McGloughlin, J Gibson, F de Loos, S Wagner, G Laible, J Y Han, M D’Occhio, L Kelly, J Lowenthal, K Gobius, P Silva, C Cooper, T Doran. Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security. Transgenic Research, 2016, 25(5): 575–595
https://doi.org/10.1007/s11248-016-9965-1 pmid: 27246007
24 M L Tizard, K A Jenkins, C A Cooper, M E Woodcock, A Challagulla, T J Doran. Potential benefits of gene editing for the future of poultry farming. Transgenic Research, 2019, 28(S2): 87–92
https://doi.org/10.1007/s11248-019-00139-0 pmid: 31321689
25 B P Telugu, K E Park, C H Park. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mammalian Genome, 2017, 28(7–8): 338–347
https://doi.org/10.1007/s00335-017-9709-4 pmid: 28712062
26 G Laible. Production of transgenic livestock: overview of transgenic technologies. In: Niemann H, Wrenzycki C, eds. Animal Biotechnology 2. Springer, 2018, 95–122
27 H Niemann, B Seamark. The evolution of farm animal biotechnology. In: Niemann H, Wrenzycki C, eds. Animal Biotechnology 1. Springer, 2018, 1–26
28 S Y Yum, K Y Youn, W J Choi, G Jang. Development of genome engineering technologies in cattle: from random to specific. Journal of Animal Science and Biotechnology, 2018, 9(1): 16
https://doi.org/10.1186/s40104-018-0232-6 pmid: 29423215
29 S Lillico. Agricultural applications of genome editing in farmed animals. Transgenic Research, 2019, 28(S2): 57–60
https://doi.org/10.1007/s11248-019-00134-5 pmid: 31321684
30 M Kumar, A K Yadav, V Verma, B Singh, G Mal, R Nagpal, R Hemalatha. Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiology, 2016, 11(4): 585–600
https://doi.org/10.2217/fmb.16.4 pmid: 27070955
31 H M Lam, J Remais, M C Fung, L Xu, S S M Sun. Food supply and food safety issues in China. Lancet, 2013, 381(9882): 2044–2053
https://doi.org/10.1016/S0140-6736(13)60776-X pmid: 23746904
32 K Mukhopadhyay, P J Thomassin, J Y Zhang. Food security in China at 2050: a global CGE exercise. Journal of Economic Structures, 2018, 7(1): 1
https://doi.org/10.1186/s40008-017-0097-4
33 K Cui, S P Shoemaker. A look at food security in China. NPJ Science of Food, 2018, 2(1): 4
https://doi.org/10.1038/s41538-018-0012-x pmid: 31304254
34 N V Fedoroff. Will common sense prevail? Trends in Genetics, 2013, 29(4): 188–189
https://doi.org/10.1016/j.tig.2012.09.002 pmid: 23069214
35 H D Jones. Future of breeding by genome editing is in the hands of regulators. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2015, 6(4): 223–232
https://doi.org/10.1080/21645698.2015.1134405 pmid: 26930115
36 Z Meghani. Genetically engineered animals, drugs, and neoliberalism: the need for a new biotechnology regulatory policy framework. Journal of Agricultural & Environmental Ethics, 2017, 30(6): 715–743
https://doi.org/10.1007/s10806-017-9696-1
37 A L Van Eenennaam. Application of genome editing in farm animals: cattle. Transgenic Research, 2019, 28(S2): 93–100
https://doi.org/10.1007/s11248-019-00141-6 pmid: 31321690
38 A L Van Eenennaam, K D Wells, J D Murray. Proposed U.S. regulation of gene-edited food animals is not fit for purpose. NPJ Science of Food, 2019, 3(1): 3
https://doi.org/10.1038/s41538-019-0035-y pmid: 31304275
39 Whitehouse. Executive Order on Modernizing the Regulatory Framework for Agricultural Biotechnology Products, 2019. Available at Whitehouse website on February 20, 2020
40 A I Whelan, M A Lema. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2015, 6(4): 253–265
https://doi.org/10.1080/21645698.2015.1114698 pmid: 26552666
41 P Thygesen. Clarifying the regulation of genome editing in Australia: situation for genetically modified organisms. Transgenic Research, 2019, 28(S2): 151–159
https://doi.org/10.1007/s11248-019-00151-4 pmid: 31321698
42 P M Fernbach, N Light, S E Scott, Y Inbar, P Rozin. Extreme opponents of genetically modified foods know the least but think they know the most. Nature Human Behaviour, 2019, 3(3): 251–256
https://doi.org/10.1038/s41562-018-0520-3 pmid: 30953007
43 J D Murray, E A Maga. Opinion: a new paradigm for regulating genetically engineered animals that are used as food. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13): 3410–3413
https://doi.org/10.1073/pnas.1602474113 pmid: 27035930
44 Statista. Number of active apps from the Apple App Store 2008–2019. Available at Statista website on February 20, 2020
45 A Maxmen. Gay gene’ provokes fears of a genetic wild west. Nature, 2019, 574: 609–610
https://doi.org/10.1038/d41586-019-03282-0 pmid: 31664219
46 W Arber, S Linn. DNA modification and restriction. Annual Review of Biochemistry, 1969, 38(1): 467–500
https://doi.org/10.1146/annurev.bi.38.070169.002343 pmid: 4897066
47 K D Wells. History and future of genetically engineered food animal regulation: an open request. Transgenic Research, 2016, 25(3): 385–394
https://doi.org/10.1007/s11248-016-9935-7 pmid: 26924471
48 K Shah, N Nathanson. Human exposure to SV40: review and comment. American Journal of Epidemiology, 1976, 103(1): 1–12
https://doi.org/10.1093/oxfordjournals.aje.a112197 pmid: 174424
49 P Berg, D Baltimore, S Brenner, R O Roblin 3rd, M F Singer. Summary statement of the Asilomar conference on recombinant DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(6): 1981–1984
https://doi.org/10.1073/pnas.72.6.1981 pmid: 806076
50 P Berg, M F Singer. The recombinant DNA controversy: twenty years later. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(20): 9011–9013
https://doi.org/10.1073/pnas.92.20.9011 pmid: 7568062
51 Executive Office of the President, Office of Science and Technology Policy. Coordinated Framework for Regulation of Biotechnology. 1986. Available at the U.S. Department of Agriculture (USDA)-Animal and Plant Health Inspection Servive (APHIS) website on February 20, 2020
52 A L Van Eenennaam, W M Muir. Transgenic salmon: a final leap to the grocery shelf? Nature Biotechnology, 2011, 29(8): 706–710
https://doi.org/10.1038/nbt.1938 pmid: 21822244
53 D Carroll, A L Van Eenennaam, J F Taylor, J Seger, D F Voytas. Regulate genome-edited products, not genome editing itself. Nature Biotechnology, 2016, 34(5): 477–479
https://doi.org/10.1038/nbt.3566 pmid: 27153273
54 G Lamppa, F Nagy, N H Chua. Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco. Nature, 1985, 316(6030): 750–752
https://doi.org/10.1038/316750a0 pmid: 4033773
55 R Jaenisch, B Mintz. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(4): 1250–1254
https://doi.org/10.1073/pnas.71.4.1250 pmid: 4364530
56 F Costantini, E Lacy. Introduction of a rabbit β-globin gene into the mouse germ line. Nature, 1981, 294(5836): 92–94
https://doi.org/10.1038/294092a0 pmid: 6945481
57 J W Gordon, F H Ruddle. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science, 1981, 214(4526): 1244–1246
https://doi.org/10.1126/science.6272397 pmid: 6272397
58 R D Palmiter, R L Brinster, R E Hammer, M E Trumbauer, M G Rosenfeld, N C Birnberg, R M Evans. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature, 1982, 300(5893): 611–615
https://doi.org/10.1038/300611a0 pmid: 6958982
59 Z Zhu, G Li, L He, S Chen. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758). Journal of Applied Ichthyology, 1985, 1(1): 31–34
https://doi.org/10.1111/j.1439-0426.1985.tb00408.x
60 W Peng. GM crop cultivation surges, but novel traits languish. Nature Biotechnology, 2011, 29(4): 302
https://doi.org/10.1038/nbt.1842 pmid: 21478839
61 International Service for the Acquisition of Agri-Biotech Applications (ISAAA). Crop Bitech Update. Available at ISAAA website on February 20, 2020
62 R Carlson. Estimating the biotech sector’s contribution to the US economy. Nature Biotechnology, 2016, 34(3): 247–255
https://doi.org/10.1038/nbt.3491 pmid: 26963545
63 P Hackett, D F Carroll. Regulatory hurdles for agriculture GMOs. Science, 2015, 347(6228): 1324
https://doi.org/10.1126/science.347.6228.1324 pmid: 25792322
64 United States Department of Agriculture (USDA)-National Agricultural Research, Extension, Education, and Economics Advisory Board (NAREEEAB). Use of Genetic Engineering in USDA Research. Available at USDA-NAREEEAB website on February 20, 2020
65 United States Department of Agriculture (USDA)-Animal and Plant Health Inspection Servive (APHIS). Secretary Perdue Issues USDA Statement on Plant Breeding Innovation. Available at USDA-APHIS website on February 2020
66 L DeFrancesco. How safe does transgenic food need to be? Nature Biotechnology, 2013, 31(9): 794–802
https://doi.org/10.1038/nbt.2686 pmid: 24022153
67 J H Postlethwait, H A Schneiderman. A clonal analysis of determination in Antennapedia a homoeotic mutant of Drosophilamelanogaster. Proceedings of the National Academy of Sciences of the United States of America, 1969, 64(1): 176–183
https://doi.org/10.1073/pnas.64.1.176 pmid: 5263000
68 H I Miller, D L Kershen. US Congress mandates silliness, USDA complies. Nature Biotechnology, 2019, 37(5): 497–498
https://doi.org/10.1038/s41587-019-0117-z pmid: 31053812
69 Pew Research Center. Most Americans Accept Genetic Engineering of Animals That Benefits Human Health, But Many Oppose Other Uses, 2019. Available at Pew Research Center website on February 20, 2020
70 Pew Research Center. Public Perspectives on Food Risks, 2018. Available at Pew Research Center website on February 20, 2020
71 U.S. Food and Drug Administration (FDA). Guidance for Industry #187, 2017. Available at FDA website on February 20, 2020
72 U.S. Food and Drug Administration (FDA). Pathogens and Filth in Spices, 2013. Available at FDA website on Feburary 20, 2020
73 C Kwit, H S Moon, S I Warwick, C N Stewart Jr. Transgene introgression in crop relatives: molecular evidence and mitigation strategies. Trends in Biotechnology, 2011, 29(6): 284–293
https://doi.org/10.1016/j.tibtech.2011.02.003 pmid: 21388698
74 N Ahmad, Z Mukhtar. Genetic manipulations in crops: challenges and opportunities. Genomics, 2017, 109(5–6): 494–505
https://doi.org/10.1016/j.ygeno.2017.07.007 pmid: 28778540
75 E A Maga, J D Murray. Welfare applications of genetically engineered animals for use in agriculture. Journal of Animal Science, 2010, 88(4): 1588–1591
https://doi.org/10.2527/jas.2010-2828 pmid: 20154173
76 D F Carlson, C A Lancto, B Zang, E S Kim, M Walton, D Oldeschulte, C Seabury, T S Sonstegard, S C Fahrenkrug. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 2016, 34(5): 479–481
https://doi.org/10.1038/nbt.3560 pmid: 27153274
77 L R Porto-Neto, D M Bickhart, A J Landaeta-Hernandez, Y T Utsunomiya, M Pagan, E Jimenez, P J Hansen, S Dikmen, S G Schroeder, E S Kim, J Sun, E Crespo, N Amati, J B Cole, D J Null, J F Garcia, A Reverter, W Barendse, T S Sonstegard. Convergent evolution of slick coat in cattle through truncation mutations in the prolactin receptor. Frontiers in Genetics, 2018, 9(9): 57
https://doi.org/10.3389/fgene.2018.00057 pmid: 29527221
78 S J Howe, M R Mansour, K Schwarzwaelder, C Bartholomae, M Hubank, H Kempski, M H Brugman, K Pike-Overzet, S J Chatters, D de Ridder, K C Gilmour, S Adams, S I Thornhill, K L Parsley, F J T Staal, R E Gale, D C Linch, J Bayford, L Brown, M Quaye, C Kinnon, P Ancliff, D K Webb, M Schmidt, C von Kalle, H B Gaspar, A J Thrasher. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. Journal of Clinical Investigation, 2008, 118(9): 3143–3150
https://doi.org/10.1172/JCI35798 pmid: 18688286
79 A Cavazza, A Moiani, F Mavilio. Mechanisms of retroviral integration and mutagenesis. Human Gene Therapy, 2013, 24(2): 119–131
https://doi.org/10.1089/hum.2012.203 pmid: 23330935
80 S Ghosh, A J Thrasher, H B Gaspar. Gene therapy for monogenic disorders of the bone marrow. British Journal of Haematology, 2015, 171(2): 155–170
https://doi.org/10.1111/bjh.13520 pmid: 26044877
81 D Cesana, M Ranzani, M Volpin, C Bartholomae, C Duros, A Artus, S Merella, F Benedicenti, L Sergi Sergi, F Sanvito, C Brombin, A Nonis, C D Serio, C Doglioni, C von Kalle, M Schmidt, O Cohen-Haguenauer, L Naldini, E Montini. Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Molecular Therapy, 2014, 22(4): 774–785
https://doi.org/10.1038/mt.2014.3 pmid: 24441399
82 P B Hackett, T K Starr, L J N Cooper. Chapter 5—Risks of insertional mutagenesis by DNA transposons in cancer gene therapy. In: Translating Gene Therapy to the Clinic: Techniques and Approaches. Translational Research: The Journal of Laboratory and Clinical Medicine, 2015, 65–83
83 F Supek, B Lehner. Scales and mechanisms of somatic mutation rate variation across the human genome. DNA Repair, 2019, 81: 102647
https://doi.org/10.1016/j.dnarep.2019.102647 pmid: 31307927
84 E S Lander, L M Linton, B Birren, C Nusbaum, M C Zody, J Baldwin, K Devon, K Dewar, M Doyle, W FitzHugh, R Funke, D Gage, K Harris, A Heaford, J Howland, L Kann, J Lehoczky, R LeVine, P McEwan, K McKernan, J Meldrim, J P Mesirov, C Miranda, W Morris, J Naylor, C Raymond, M Rosetti, R Santos, A Sheridan, C Sougnez, Y Stange-Thomann, N Stojanovic, A Subramanian, D Wyman, J Rogers, J Sulston, R Ainscough, S Beck, D Bentley, J Burton, C Clee, N Carter, A Coulson, R Deadman, P Deloukas, A Dunham, I Dunham, R Durbin, L French, D Grafham, S Gregory, T Hubbard, S Humphray, A Hunt, M Jones, C Lloyd, A McMurray, L Matthews, S Mercer, S Milne, J C Mullikin, A Mungall, R Plumb, M Ross, R Shownkeen, S Sims, R H Waterston, R K Wilson, L W Hillier, J D McPherson, M A Marra, E R Mardis, L A Fulton, A T Chinwalla, K H Pepin, W R Gish, S L Chissoe, M C Wendl, K D Delehaunty, T L Miner, A Delehaunty, J B Kramer, L L Cook, R S Fulton, D L Johnson, P J Minx, S W Clifton, T Hawkins, E Branscomb, P Predki, P Richardson, S Wenning, T Slezak, N Doggett, J F Cheng, A Olsen, S Lucas, C Elkin, E Uberbacher, M Frazier, R A Gibbs, D M Muzny, S E Scherer, J B Bouck, E J Sodergren, K C Worley, C M Rives, J H Gorrell, M L Metzker, S L Naylor, R S Kucherlapati, D L Nelson, G M Weinstock, Y Sakaki, A Fujiyama, M Hattori, T Yada, A Toyoda, T Itoh, C Kawagoe, H Watanabe, Y Totoki, T Taylor, J Weissenbach, R Heilig, W Saurin, F Artiguenave, P Brottier, T Bruls, E Pelletier, C Robert, P Wincker, D R Smith, L Doucette-Stamm, M Rubenfield, K Weinstock, H M Lee, J Dubois, A Rosenthal, M Platzer, G Nyakatura, S Taudien, A Rump, H Yang, J Yu, J Wang, G Huang, J Gu, L Hood, L Rowen, A Madan, S Qin, R W Davis, N A Federspiel, A P Abola, M J Proctor, R M Myers, J Schmutz, M Dickson, J Grimwood, D R Cox, M V Olson, R Kaul, C Raymond, N Shimizu, K Kawasaki, S Minoshima, G A Evans, M Athanasiou, R Schultz, B A Roe, F Chen, H Pan, J Ramser, H Lehrach, R Reinhardt, W R McCombie, M de la Bastide, N Dedhia, H Blöcker, K Hornischer, G Nordsiek, R Agarwala, L Aravind, J A Bailey, A Bateman, S Batzoglou, E Birney, P Bork, D G Brown, C B Burge, L Cerutti, H C Chen, D Church, M Clamp, R R Copley, T Doerks, S R Eddy, E E Eichler, T S Furey, J Galagan, J G Gilbert, C Harmon, Y Hayashizaki, D Haussler, H Hermjakob, K Hokamp, W Jang, L S Johnson, T A Jones, S Kasif, A Kaspryzk, S Kennedy, W J Kent, P Kitts, E V Koonin, I Korf, D Kulp, D Lancet, T M Lowe, A McLysaght, T Mikkelsen, J V Moran, N Mulder, V J Pollara, C P Ponting, G Schuler, J Schultz, G Slater, A F Smit, E Stupka, J Szustakowki, D Thierry-Mieg, J Thierry-Mieg, L Wagner, J Wallis, R Wheeler, A Williams, Y I Wolf, K H Wolfe, S P Yang, R F Yeh, F Collins, M S Guyer, J Peterson, A Felsenfeld, K A Wetterstrand, A Patrinos, M J Morgan, P de Jong, J J Catanese, K Osoegawa, H Shizuya, S Choi, Y J Chen, J Szustakowki. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860–921
https://doi.org/10.1038/35057062 pmid: 11237011
85 R Cordaux. The human genome in the LINE of fire. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(49): 19033–19034
https://doi.org/10.1073/pnas.0810202105 pmid: 19057007
86 A P J de Koning, W Gu, T A Castoe, M A Batzer, D D Pollock. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genetics, 2011, 7(12): e1002384
https://doi.org/10.1371/journal.pgen.1002384 pmid: 22144907
87 C Ade, A M Roy-Engel, P L Deininger. Alu elements: an intrinsic source of human genome instability. Current Opinion in Virology, 2013, 3(6): 639–645
https://doi.org/10.1016/j.coviro.2013.09.002 pmid: 24080407
88 J L Garcia-Perez, T J Widmann, I R Adams. The impact of transposable elements on mammalian development. Development, 2016, 143(22): 4101–4114
https://doi.org/10.1242/dev.132639 pmid: 27875251
89 E J Gardner, E Prigmore, G Gallone, P Danecek, K E Samocha, J Handsaker, S S Gerety, H Ironfield, P J Short, A Sifrim, T Singh, K E Chandler, E Clement, K L Lachlan, K Prescott, E Rosser, D R FitzPatrick, H V Firth, M E Hurles. Contribution of retrotransposition to developmental disorders. Nature Communications, 2019, 10(1): 4630
https://doi.org/10.1038/s41467-019-12520-y pmid: 31604926
90 S R Richardson, S Morell, G J Faulkner. L1 retrotransposons and somatic mosaicism in the brain. Annual Review of Genetics, 2014, 48(1): 1–27
https://doi.org/10.1146/annurev-genet-120213-092412 pmid: 25036377
91 P A Larsen, K E Hunnicutt, R J Larsen, A D Yoder, A M Saunders. Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosome Research, 2018, 26(1–2): 93–111
https://doi.org/10.1007/s10577-018-9573-4 pmid: 29460123
92 M Zarrei, J R MacDonald, D Merico, S W Scherer. A copy number variation map of the human genome. Nature Reviews: Genetics, 2015, 16(3): 172–183
https://doi.org/10.1038/nrg3871 pmid: 25645873
93 S Lauer, D Gresham. An evolving view of copy number variants. Current Genetics, 2019, 65(6): 1287–1295
https://doi.org/10.1007/s00294-019-00980-0 pmid: 31076843
94 B N Keel, D J Nonneman, A K Lindholm-Perry, W T Oliver, G A Rohrer. A survey of copy number variation in the porcine genome detected from whole-genome sequence. Frontiers in Genetics, 2019, 10: 737
https://doi.org/10.3389/fgene.2019.00737 pmid: 31475038
95 N V Federoff. Maize transposable elements in development and evolution. Integrative and Comparative Biology, 1989, 29(2): 549–555
96 P S Schnable, D Ware, R S Fulton, J C Stein, F Wei, S Pasternak, C Liang, J Zhang, L Fulton, T A Graves, P Minx, A D Reily, L Courtney, S S Kruchowski, C Tomlinson, C Strong, K Delehaunty, C Fronick, B Courtney, S M Rock, E Belter, F Du, K Kim, R M Abbott, M Cotton, A Levy, P Marchetto, K Ochoa, S M Jackson, B Gillam, W Chen, L Yan, J Higginbotham, M Cardenas, J Waligorski, E Applebaum, L Phelps, J Falcone, K Kanchi, T Thane, A Scimone, N Thane, J Henke, T Wang, J Ruppert, N Shah, K Rotter, J Hodges, E Ingenthron, M Cordes, S Kohlberg, J Sgro, B Delgado, K Mead, A Chinwalla, S Leonard, K Crouse, K Collura, D Kudrna, J Currie, R He, A Angelova, S Rajasekar, T Mueller, R Lomeli, G Scara, A Ko, K Delaney, M Wissotski, G Lopez, D Campos, M Braidotti, E Ashley, W Golser, H Kim, S Lee, J Lin, Z Dujmic, W Kim, J Talag, A Zuccolo, C Fan, A Sebastian, M Kramer, L Spiegel, L Nascimento, T Zutavern, B Miller, C Ambroise, S Muller, W Spooner, A Narechania, L Ren, S Wei, S Kumari, B Faga, M J Levy, L McMahan, P Van Buren, M W Vaughn, K Ying, C T Yeh, S J Emrich, Y Jia, A Kalyanaraman, A P Hsia, W B Barbazuk, R S Baucom, T P Brutnell, N C Carpita, C Chaparro, J M Chia, J M Deragon, J C Estill, Y Fu, J A Jeddeloh, Y Han, H Lee, P Li, D R Lisch, S Liu, Z Liu, D H Nagel, M C McCann, P SanMiguel, A M Myers, D Nettleton, J Nguyen, B W Penning, L Ponnala, K L Schneider, D C Schwartz, A Sharma, C Soderlund, N M Springer, Q Sun, H Wang, M Waterman, R Westerman, T K Wolfgruber, L Yang, Y Yu, L Zhang, S Zhou, Q Zhu, J L Bennetzen, R K Dawe, J Jiang, N Jiang, G G Presting, S R Wessler, S Aluru, R A Martienssen, S W Clifton, W R McCombie, R A Wing, R K Wilson. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112–1115
https://doi.org/10.1126/science.1178534 pmid: 19965430
97 Y Jiao, P Peluso, J Shi, T Liang, M C Stitzer, B Wang, M S Campbell, J C Stein, X Wei, C S Chin, K Guill, M Regulski, S Kumari, A Olson, J Gent, K L Schneider, T K Wolfgruber, M R May, N M Springer, E Antoniou, W R McCombie, G G Presting, M McMullen, J Ross-Ibarra, R K Dawe, A Hastie, D R Rank, D Ware. Improved maize reference genome with single-molecule technologies. Nature, 2017, 546(7659): 524–527
https://doi.org/10.1038/nature22971 pmid: 28605751
98 T U Berendonk, C M Manaia, C Merlin, D Fatta-Kassinos, E Cytryn, F Walsh, H Bürgmann, H Sørum, M Norström, M N Pons, N Kreuzinger, P Huovinen, S Stefani, T Schwartz, V Kisand, F Baquero, J L Martinez. Tackling antibiotic resistance: the environmental framework. Nature Reviews: Microbiology, 2015, 13(5): 310–317
https://doi.org/10.1038/nrmicro3439 pmid: 25817583
99 T Stalder, M O Press, S Sullivan I Liachko, E M Top. Linking the resistome and plasmidome to the microbiome. The ISME Journal:Multidisciplinary Journal of Microbial Ecology, 2019, 13: 2437–2446
100 P B Hackett, M C Alvarez. The molecular genetics of transgenic fish. Recent Biotechnology Advances Articles, 2000, 4(Part B): 77–145
101 S Mills, O E McAuliffe, A Coffey, G F Fitzgerald, R P Ross. Plasmids of lactococci—genetic accessories or genetic necessities? FEMS Microbiology Reviews, 2006, 30(2): 243–273
https://doi.org/10.1111/j.1574-6976.2005.00011.x pmid: 16472306
102 R Sender, S Fuchs, R Milo. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 2016, 14(8): e1002533
https://doi.org/10.1371/journal.pbio.1002533 pmid: 27541692
103 K E Nelson, G M Weinstock, S K Highlander, K C Worley, H H Creasy, J R Wortman, D B Rusch, M Mitreva, E Sodergren, A T Chinwalla, M Feldgarden, D Gevers, B J Haas, R Madupu, D V Ward, B W Birren, R A Gibbs, B Methe, J F Petrosino, R L Strausberg, G G Sutton, O R White, R K Wilson, S Durkin, M G Giglio, S Gujja, C Howarth, C D Kodira, N Kyrpides, T Mehta, D M Muzny, M Pearson, K Pepin, A Pati, X Qin, C Yandava, Q Zeng, L Zhang, A M Berlin, L Chen, T A Hepburn, J Johnson, J McCorrison, J Miller, P Minx, C Nusbaum, C Russ, S M Sykes, C M Tomlinson, S Young, W C Warren, J Badger, J Crabtree, V M Markowitz, J Orvis, A Cree, S Ferriera, L L Fulton, R S Fulton, M Gillis, L D Hemphill, V Joshi, C Kovar, M Torralba, K A Wetterstrand, A Abouellleil, A M Wollam, C J Buhay, Y Ding, S Dugan, M G FitzGerald, M Holder, J Hostetler, S W Clifton, E Allen-Vercoe, A M Earl, C N Farmer, K Liolios, M G Surette, Q Xu, C Pohl, K Wilczek-Boney, D Zhu. A catalog of reference genomes from the human microbiome. Science, 2010, 328(5981): 994–999
https://doi.org/10.1126/science.1183605 pmid: 20489017
104 P Ó Cuív, D Aguirre de Cárcer, M Jones, E S Klaassens, D L Worthley, V L J Whitehall, S Kang, C S McSweeney, B A Leggett, M Morrison. The effects from DNA extraction methods on the evaluation of microbial diversity associated with human colonic tissue. Microbial Ecology, 2011, 61(2): 353–362
https://doi.org/10.1007/s00248-010-9771-x pmid: 21153634
105 J R Huddleston. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infection and Drug Resistance, 2014, 7: 167–176
https://doi.org/10.2147/IDR.S48820 pmid: 25018641
106 Y Cui, T Hu, X Qu, L Zhang, Z Ding, A Dong. Plasmids from food lactic acid bacteria: diversity, similarity, and new developments. International Journal of Molecular Sciences, 2015, 16(6): 13172–13202
https://doi.org/10.3390/ijms160613172 pmid: 26068451
107 R Sitaraman. Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities. Microbiome, 2018, 6(1): 163
https://doi.org/10.1186/s40168-018-0551-z pmid: 30223892
108 H Jeong, B Arif, G Caetano-Anollés, K M Kim, A Nasir. Horizontal gene transfer in human-associated microorganisms inferred by phylogenetic reconstruction and reconciliation. Scientific Reports, 2019, 9(1): 5953
https://doi.org/10.1038/s41598-019-42227-5 pmid: 30976019
109 Z DeFilipp, P P Bloom, M Torres Soto, M K Mansour, M R A Sater, M H Huntley, S Turbett, R T Chung, Y B Chen, E L Hohmann. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. New England Journal of Medicine, 2019, 381(21): 2043–2050
https://doi.org/10.1056/NEJMoa1910437 pmid: 31665575
110 A L Norris, S S Lee, K J Greenlees, D A Tadesse, M F Miller, H A Lombardi. Template plasmid integration in germline genome-edited cattle. Nature Biotechnology, 2020, 38(2): 163–164
https://doi.org/10.1038/s41587-019-0394-6 pmid: 32034391
111 A E Young, T A Mansour, B R McNabb, J R Owen, J F Trott, C T Brown, A L Van Eenennaam. Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nature Biotechnology, 2020, 38(2): 225–232
https://doi.org/10.1038/s41587-019-0266-0 pmid: 31591551
112 M A Molteni. Cow, a Controversy, and a Dashed Dream of More Humane Farms. Wired 10.08.2019. Available at wired website on February 20, 2020
113 A Bruce, D Castle, C Gibbs, J Tait, C B A Whitelaw. Novel GM animal technologies and their governance. Transgenic Research, 2013, 22(4): 681–695
https://doi.org/10.1007/s11248-013-9724-5 pmid: 23780762
114 A Bruce. Genome edited animals: learning from GM crops? Transgenic Research, 2017, 26(3): 385–398
https://doi.org/10.1007/s11248-017-0017-2 pmid: 28432545
115 R J Wall, D E Kerr, K R Bondioli. Transgenic dairy cattle: genetic engineering on a large scale. Journal of Dairy Science, 1997, 80(9): 2213–2224
https://doi.org/10.3168/jds.S0022-0302(97)76170-8 pmid: 9313167
116 W S Tan, D F Carlson, M W Walton, S C Fahrenkrug, P B Hackett. Precision editing of large animal genomes. Advances in Genetics, 2012, 80: 37–97
https://doi.org/10.1016/B978-0-12-404742-6.00002-8 pmid: 23084873
117 A L Van Eenennaam. Genetic modification of food animals. Current Opinion in Biotechnology, 2017, 44: 27–34
https://doi.org/10.1016/j.copbio.2016.10.007 pmid: 27835795
118 E A Maga, J S Cullor, W Smith, G B Anderson, J D Murray. Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathogens and Disease, 2006, 3(4): 384–392
https://doi.org/10.1089/fpd.2006.3.384 pmid: 17199520
119 C A Cooper, E A Maga, J D Murray. Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: past, present, and future. Transgenic Research, 2015, 24(4): 605–614
https://doi.org/10.1007/s11248-015-9885-5 pmid: 26059245
120 L Lai, J X Kang, R Li, J Wang, W T Witt, H Y Yong, Y Hao, D M Wax, C N Murphy, A Rieke, M Samuel, M L Linville, S W Korte, R W Evans, T E Starzl, R S Prather, Y Dai. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nature Biotechnology, 2006, 24(4): 435–436
https://doi.org/10.1038/nbt1198 pmid: 16565727
121 D Pan, L Zhang, Y Zhou, C Feng, C Long, X Liu, R Wan, J Zhang, A Lin, E Dong, S Wang, H Xu, H Chen. Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer. Science China. Life Sciences, 2010, 53(4): 517–523
https://doi.org/10.1007/s11427-010-0080-x pmid: 20596920
122 S P Golovan, R G Meidinger, A Ajakaiye, M Cottrill, M Z Wiederkehr, D J Barney, C Plante, J W Pollard, M Z Fan, M A Hayes, J Laursen, J P Hjorth, R R Hacker, J P Phillips, C W Forsberg. Pigs expressing salivary phytase produce low-phosphorus manure. Nature Biotechnology, 2001, 19(8): 741–745
https://doi.org/10.1038/90788 pmid: 11479566
123 C C Zhang. Citrus greening is killing the world’s orange trees. Scientists are racing to help. Chemical and Engineering News, 2019, 97(23): 31–35
https://doi.org/10.1016/j.ces.2019.05.019
124 A Maxmen. CRISPR might be the banana’s only hope against a deadly fungus. Nature, 2019, 574(7776): 15
https://doi.org/10.1038/d41586-019-02770-7 pmid: 31576029
125 C Tait-Burkard, A Doeschl-Wilson, M J McGrew, A L Archibald, H M Sang, R D Houston, C B Whitelaw, M Watson. Livestock 2.0—genome editing for fitter, healthier, and more productive farmed animals. Genome Biology, 2018, 19(1): 204
https://doi.org/10.1186/s13059-018-1583-1 pmid: 30477539
126 P B Hackett, S C Fahrenkrug, D F Carlson. The promises and challenges of precision gene editing in animals of agricultural importance. In: Eaglesham A, Hardy R W F, eds. New DNA-Editing Approaches: Methods, Applications and Policy for Agriculture. NABC Report 26, 2015, 39–52
127 J E Losey, L S Rayor, M E Carter. Transgenic pollen harms monarch larvae. Nature, 1999, 399(6733): 214
https://doi.org/10.1038/20338 pmid: 10353241
128 R Schurman, W A Munro. Fighting for the Future of Food. Minneapolis, USA: University of Minnesota Press, 2010
129 R L Hellmich, B D Siegfried, M K Sears, D E Stanley-Horn, M J Daniels, H R Mattila, T Spencer, K G Bidne, L C Lewis. Monarch larvae sensitivity to Bacillus thuringiensis-purified proteins and pollen. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11925–11930
https://doi.org/10.1073/pnas.211297698 pmid: 11559841
130 K S Oberhauser, M D Prysby, H R Mattila, D E Stanley-Horn, M K Sears, G Dively, E Olson, J M Pleasants, W K F Lam, R L Hellmich. Temporal and spatial overlap between monarch larvae and corn pollen. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11913–11918
https://doi.org/10.1073/pnas.211234298 pmid: 11559838
131 M K Sears, R L Hellmich, D E Stanley-Horn, K S Oberhauser, J M Pleasants, H R Mattila, B D Siegfried, G P Dively. Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11937–11942
https://doi.org/10.1073/pnas.211329998 pmid: 11559842
132 D E Stanley-Horn, G P Dively, R L Hellmich, H R Mattila, M K Sears, R Rose, L C H Jesse, J E Losey, J J Obrycki, L Lewis. Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11931–11936
https://doi.org/10.1073/pnas.211277798 pmid: 11559839
133 A R Zangerl, D McKenna, C L Wraight, M Carroll, P Ficarello, R Warner, M R Berenbaum. Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11908–11912
https://doi.org/10.1073/pnas.171315698 pmid: 11559837
134 W D Hutchison, E C Burkness, P D Mitchell, R D Moon, T W Leslie, S J Fleischer, M Abrahamson, K L Hamilton, K L Steffey, M E Gray, R L Hellmich, L V Kaster, T E Hunt, R J Wright, K Pecinovsky, T L Rabaey, B R Flood, E S Raun. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science, 2010, 330(6001): 222–225
https://doi.org/10.1126/science.1190242 pmid: 20929774
135 W M Muir, R D Howard. Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproducing organisms. Transgenic Research, 2002, 11(2): 101–114
https://doi.org/10.1023/A:1015203812200 pmid: 12054344
136 R H Devlin, L F Sundström, W M Muir. Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends in Biotechnology, 2006, 24(2): 89–97
https://doi.org/10.1016/j.tibtech.2005.12.008 pmid: 16380181
137 P B Hackett. Genetic engineering: what are we fearing? Transgenic Research, 2002, 11(2): 97–99
https://doi.org/10.1023/A:1015292423744 pmid: 12054356
138 K A Glover, M Quintela, V Wennevik, F Besnier, A G E Sørvik, Ø Skaala. Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS One, 2012, 7(8): e43129
https://doi.org/10.1371/journal.pone.0043129 pmid: 22916215
139 O T Skilbrei, M Heino, T Svåsand. Using simulated escape events to assess the annual numbers and destinies of escaped farmed Atlantic salmon of different life stages from farm sites in Norway. ICES Journal of Marine Science, 2014, 72(2): 670–685
https://doi.org/10.1093/icesjms/fsu133
140 A C Harvey, O T Skilbrei, F Besnier, M F Solberg, A E Sørvik, K A Glover. Implications for introgression: has selection for fast growth altered the size threshold for precocious male maturation in domesticated Atlantic salmon? BMC Evolutionary Biology, 2018, 18(1): 188
https://doi.org/10.1186/s12862-018-1294-y pmid: 30558529
141 M Enserink. Tough lessons from golden rice. Science, 2008, 320(5875): 468–471
https://doi.org/10.1126/science.320.5875.468 pmid: 18436769
142 B Owens. Golden Rice is safe to eat, says FDA. Nature Biotechnology, 2018, 36(7): 559–560
https://doi.org/10.1038/nbt0718-559a pmid: 29979646
143 Washington Post.107 Nobel laureates sign letter blasting Greenpeace over GMOs. Available at Washington Post website on February 20, 2020
144 A McHughen. A critical assessment of regulatory triggers for products of biotechnology: product vs. process. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2016, 7(3–4): 125–158
https://doi.org/10.1080/21645698.2016.1228516 pmid: 27813691
145 U.S. Food and Drug Administration (FDA). Modernizing the Regulatory System for Plant and Animal Biotechnology Products, 2015. Available at FDA website on February 20, 2020
146 S Friedrichs, Y Takasu, P Kearns, B Dagallier, R Oshima, J Schofield, C Moreddu. Meeting report of the OECD conference on genome editing: applications in agriculture—implications for health, environment and regulation. Transgenic Research, 2019, 28(3–4): 419–463
https://doi.org/10.1007/s11248-019-00154-1 pmid: 31309374
147 D F Carlson, W Tan, P B Hackett, S C Fahrenkrug. Editing livestock genomes with site-specific nucleases. Reproduction, Fertility, and Development, 2013, 26(1): 74–82
https://doi.org/10.1071/RD13260 pmid: 24305179
148 W Tan, D F Carlson, C A Lancto, J R Garbe, D A Webster, P B Hackett, S C Fahrenkrug. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16526–16531
https://doi.org/10.1073/pnas.1310478110 pmid: 24014591
149 C.G Acevedo-Rocha, N. Budisa Xenomicrobiology: a roadmap for genetic code engineering. Microbial Microbiology, 2016, 9(5): 666–676
150 The Economist. The (April 6, 2019) Redesigning life—the promise of synthetic biology. Available at the Economist website on February 20, 2020
151 Y Fong, P B Hackett. Acceptance and access to gene editing: science and our obligations to mankind. Molecular Therapy, 2017, 25(1): 1–2
https://doi.org/10.1016/j.ymthe.2016.12.012 pmid: 28129104
152 A Bruce, D Bruce. Genome editing and responsible innovation, can they be reconciled? Journal of Agricultural & Environmental Ethics, 2019, 32(5–6): 769–788
https://doi.org/10.1007/s10806-019-09789-w
153 X Wang, Y Chen, T S Sonstegard, P B Hackett, Z Fan, K Li. Meeting report on the 2019 international symposium of molecular design breeding in animals (Yangling, China) with the consensus on genome-editing agricultural animals and their regulation. Transgenic Research, 2020, 29(2): 263–265
https://doi.org/10.1007/s11248-020-00195-x pmid: 32078125
154 Genome Writers Guild (GWG). A better future for humanity through genome engineering and public education. Available at GWG website on February 20, 2020
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn