Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  学科浏览  |  专题文章  |  热点文章  |  下载排行
Frontiers of Agricultural Science and Engineering    2020, Vol. 7 Issue (2) : 148-160     https://doi.org/10.15302/J-FASE-2019305
REVIEW
Embryo-mediated genome editing for accelerated genetic improvement of livestock
Zachariah MCLEAN1,2, Björn OBACK1,3, Götz LAIBLE1,3()
1. Reproduction, AgResearch, Ruakura Research Centre, Hamilton 3214, New Zealand
2. School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
3. School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
全文: PDF(554 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Selecting beneficial DNA variants is the main goal of animal breeding. However, this process is inherently inefficient because each animal only carries a fraction of all desirable variants. Genome editing technology with its ability to directly introduce beneficial sequence variants offers new opportunities to modernize animal breeding by overcoming this biological limitation and accelerating genetic gains. To realize rapid genetic gain, precise edits need to be introduced into genomically-selected embryos, which minimizes the genetic lag. However, embryo-mediated precision editing by homology-directed repair (HDR) mechanisms is currently an inefficient process that often produces mosaic embryos and greatly limits the numbers of available edited embryos. This review provides a summary of genome editing in bovine embryos and proposes an embryo-mediated accelerated breeding scheme that overcomes the present efficiency limitations of HDR editing in bovine embryos. It integrates embryo-based genomic selection with precise multi-editing and uses embryonic cloning with elite edited blastomeres or embryonic pluripotent stem cells to resolve mosaicism, enable multiplex editing and multiply rare elite genotypes. Such a breeding strategy would enable a more targeted, accelerated approach for livestock improvement that allows stacking of beneficial variants, even including novel traits from outside the breeding population, in the most recent elite genetic background, essentially within a single generation.

Keywords animal breeding      cattle      cloning      CRISPR/Cas9      cytoplasmic injection      embryo      genome editing      germline chimaeras      HDR      livestock improvement      TALENs     
最新录用日期:    在线预览日期:    发布日期: 2020-04-28
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Zachariah MCLEAN
Björn OBACK
Götz LAIBLE
引用本文:   
Zachariah MCLEAN,Björn OBACK,Götz LAIBLE. Embryo-mediated genome editing for accelerated genetic improvement of livestock[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 148-160.
网址:  
https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2019305     OR     https://journal.hep.com.cn/fase/EN/Y2020/V7/I2/148
Fig.1  Soma- and embryo-mediated genome editing approaches in cattle. (a) Somatic cells isolated from an elite sire are genome edited (locus black to gold) and cloned to introduce the modification on the same genetic background. A new elite sire with a higher breeding worth—and carrying the genomic modification—is produced after crossing the cloned sire with an elite dam. (b) For embryo-mediated genome editing, the elite sire and dam are crossed, and the genome editing carried out in the zygote, introducing the genomic modification in the higher breeding worth genetic background in a single generation.
Nucleasea Reagentb Delivery methodc Delivery time
(post IVF)/hd
Target locus Intended
editing pathwaye
Edited embryos/% Mosaic embryos/%f Mosaic/total edited offspring Reference
TALE mRNA CI 19 ACAN or GDF8 NHEJ NHEJ: 2–50 ~20 [25]
TALE mRNA CI 24 GDF8 NHEJ NHEJ: 31–57 ND 1/3 [26]
ZF or
TALE
Plasmid or mRNA CI 8 or 18 LGB NHEJ & HDR NHEJ: 29–83
HDR: 11–46
~80 [27]
TALE plasmid CI 18 LGB HDR HDR: 21–32 ND 1/3g [20]
Cas9 mRNA CI 20–22 NHEJ NHEJ: 83 ND [28]
Cas9 Plasmid or mRNA CI 5 PRNP NHEJ & HDR KI NHEJ: 25–45
KI: 12.5
~85 [29]
Cas9 RNP E 8 PMEL NHEJ & HDR NHEJ: 57–100
HDR: 0–6
ND [30]
Cas9 RNP CI 10 (IVF),
1 (PG)
POU5F1 NHEJ NHEJ: 86 ~34 [31]
Cas9 RNP E 18–22 NANOS2 NHEJ NHEJ: ~63 ND [32]
Cas9 RNP E 10 or 15 GDF8 NHEJ NHEJ: 20–60 ~75 [33]
Tab.1  Publications of embryo-mediated genome editing in bovine zygotes
Fig.2  Cytoplasmic injection in a bovine zygote. Image courtesy of Dr. Jingwei Wei (AgResearch, Ruakura Research Centre, New Zealand).
Fig.3  Resolving mosaicism in edited embryos by embryonic cell transfer (ECT) blastomere cloning. After genome editing in the zygote, a mosaic morula can be dissociated and the blastomeres used for ECT. The resulting embryos derived from a single blastomere would then be non-mosaic, which can be confirmed with an embryo biopsy before transfer or cryopreservation.
Fig.4  Multiplex genome editing in embryonic pluripotent stem cells (ePSCs) isolated from a genomically selected elite blastocyst. With high clonogenicity and stable pluripotency, ePSCs would allow sequential multiplex genome editing of multiple loci (loci black to gold), followed by clonal expansion of edited strains.
Fig.5  Embryo-mediated accelerated breeding in cattle. (a) Using proven technologies (solid arrows), precise genomic edits can be introduced in zygotes from elite sires and the best embryos identified by genomic selection (GS). The desired embryonic genotype can then be multiplied by embryonic cell transfer (ECT) cloning and elite offspring generated. (b) A complementary pathway (dashed arrows) is centered around embryonic pluripotent stem cells (ePSCs). ePSCs would be isolated from an elite embryo and numerous genomic modifications introduced. Alternatively, ePSCs would be isolated from embryos multiplied by ECT for subsequent genome editing. Offspring could then be produced by cloning or as a chimaera with absolute transmission of the elite germline.
1 P K Thornton. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2010, 365(1554): 2853–2867
https://doi.org/10.1098/rstb.2010.0134
2 T Meuwissen, B Hayes, M Goddard. Genomic selection: a paradigm shift in animal breeding. Animal Frontiers, 2016, 6(1): 6–14
https://doi.org/10.2527/af.2016-0002
3 T H E Meuwissen, B J Hayes, M E Goddard. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819–1829
4 C Tait-Burkard, A Doeschl-Wilson, M J McGrew, A L Archibald, H M Sang, R D Houston, C B Whitelaw, M Watson. Livestock 2.0- genome editing for fitter, healthier, and more productive farmed animals. Genome Biology, 2018, 19(1): 204
https://doi.org/10.1186/s13059-018-1583-1
5 M Georges. Towards sequence-based genomic selection of cattle. Nature Genetics, 2014, 46(8): 807–809
https://doi.org/10.1038/ng.3048
6 J Hauschild-Quintern, B Petersen, G J Cost, H Niemann. Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cellular and Molecular Life Sciences, 2013, 70(16): 2969–2983
https://doi.org/10.1007/s00018-012-1204-1
7 C Mussolino, T Cathomen. TALE nucleases: tailored genome engineering made easy. Current Opinion in Biotechnology, 2012, 23(5): 644–650
https://doi.org/10.1016/j.copbio.2012.01.013
8 J D Sander, J K Joung. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347–355
https://doi.org/10.1038/nbt.2842
9 A Xiao, Z X Wang, Y Y Hu, Y D Wu, Z Luo, Z P Yang, Y Zu, W Y Li, P Huang, X J Tong, Z Y Zhu, S Lin, B Zhang. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Research, 2013, 41(14): e141
https://doi.org/10.1093/nar/gkt464
10 W F Tan, C Proudfoot, S G Lillico, C B A Whitelaw. Gene targeting, genome editing: from Dolly to editors. Transgenic Research, 2016, 25(3): 273–287
https://doi.org/10.1007/s11248-016-9932-x
11 A Eid, S Alshareef, M M Mahfouz. CRISPR base editors: genome editing without double-stranded breaks. Biochemical Journal, 2018, 475(11): 1955–1964
12 A V Anzalone, P B Randolph, J R Davis, A A Sousa, L W Koblan, J M Levy, P J Chen, C Wilson, G A Newby, A Raguram, D R Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
https://doi.org/10.1038/s41586-019-1711-4
13 D Carroll. Staying on target with CRISPR-Cas. Nature Biotechnology, 2013, 31(9): 807–809
https://doi.org/10.1038/nbt.2684
14 A C Komor, A H Badran, D R Liu. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017, 168(1–2): 20–36
https://doi.org/10.1016/j.cell.2016.10.044
15 P Akcakaya, M L Bobbin, J A Guo, J Malagon-Lopez, K Clement, S P Garcia, M D Fellows, M J Porritt, M A Firth, A Carreras, T Baccega, F Seeliger, M Bjursell, S Q Tsai, N T Nguyen, R Nitsch, L M Mayr, L Pinello, M Bohlooly-Y, M J Aryee, M Maresca, J K Joung. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature, 2018, 561(7723): 416–419
https://doi.org/10.1038/s41586-018-0500-9
16 M Kosicki, K Tomberg, A Bradley. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 2018, 36(8): 765–771
https://doi.org/10.1038/nbt.4192
17 C Li, S W Zhou, Y Li, G W Li, Y G Ding, L Li, J Liu, L Qu, T Sonstegard, X X Huang, Y Jiang, Y L Chen, B Petersen, X L Wang. Trio-based deep sequencing reveals a low incidence of off-target mutations in the offspring of genetically edited goats. Frontiers in Genetics, 2018, 9: 449
18 X L Wang, J Liu, Y Y Niu, Y Li, S W Zhou, C Li, B H Ma, Q F Kou, B Petersen, T Sonstegard, X X Huang, Y Jiang, Y L Chen. Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep. BMC Genomics, 2018, 19(1): 397
https://doi.org/10.1186/s12864-018-4712-z
19 D N Wells. Animal cloning: problems and prospects. Revue Scientifique et Technique (International Office of Epizootics), 2005, 24(1): 251–264
https://doi.org/10.20506/rst.24.1.1566
20 J W Wei, S Wagner, P Maclean, B Brophy, S Cole, G Smolenski, D F Carlson, S C Fahrenkrug, D N Wells, G Laible. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Scientific Reports, 2018, 8(1): 7661
https://doi.org/10.1038/s41598-018-25654-8
21 E Mullaart, D Wells. Embryo Biopsies for Genomic Selection. In: Niemann H, Wrenzycki C, eds. Animal Biotechnology 2: Emerging Breeding Technologies. Cham: Springer, 2018, 81–94
22 F S Hely, P R Amer, B Oback, D N Wells. Integration of IVF technologies with genomic selection to generate high merit AI bulls: a simulation study. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 2017, 22: 533–536
23 J W M Bastiaansen, H Bovenhuis, M A M Groenen, H J Megens, H A Mulder. The impact of genome editing on the introduction of monogenic traits in livestock. Genetics, Selection, Evolution, 2018, 50(1): 18
https://doi.org/10.1186/s12711-018-0389-7
24 J Jenko, G Gorjanc, M A Cleveland, R K Varshney, C B A Whitelaw, J A Woolliams, J M Hickey. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genetics, Selection, Evolution, 2015, 47(1): 55
https://doi.org/10.1186/s12711-015-0135-3
25 D F Carlson, W Tan, S G Lillico, D Stverakova, C Proudfoot, M Christian, D F Voytas, C R Long, C B A Whitelaw, S C Fahrenkrug. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17382–17387
https://doi.org/10.1073/pnas.1211446109
26 C Proudfoot, D F Carlson, R Huddart, C R Long, J H Pryor, T J King, S G Lillico, A J Mileham, D G McLaren, C B A Whitelaw, S C Fahrenkrug. Genome edited sheep and cattle. Transgenic Research, 2015, 24(1): 147–153
https://doi.org/10.1007/s11248-014-9832-x
27 J W Wei, S Wagner, D Lu, P Maclean, D F Carlson, S C Fahrenkrug, G Laible. Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome. Scientific Reports, 2015, 5(1): 11735
https://doi.org/10.1038/srep11735
28 Y S Bogliotti, M Vilarino, P J Ross. Laser-assisted cytoplasmic microinjection in livestock zygotes. Journal of Visualized Experiments, 2016, 116: e54465
29 R J Bevacqua, R Fernandez-Martin, V Savy, N G Canel, M I Gismondi, W A Kues, D F Carlson, S C Fahrenkrug, H Niemann, O A Taboga, S Ferraris, D F Salamone. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology, 2016, 86(8): 1886–1896.e1
https://doi.org/10.1016/j.theriogenology.2016.06.010
30 B Brophy, S Cole, P Gaynor, G Laible, B Oback, J Wei. Developing the conditions for bovine zygote-mediated genome editing by electroporation. In: Proceedings of the World Congress on Genetics Applied to Livestock Production, Technologies: Gene Editing. World Congress on Genetics Applied to Livestock Production Digital Archive, 2018, 1118
31 B W Daigneault, S Rajput, G W Smith, P J Ross. Embryonic POU5F1 is required for expanded bovine blastocyst formation. Scientific Reports, 2018, 8(1): 7753
https://doi.org/10.1038/s41598-018-25964-x
32 D Q Miao, M I Giassetti, M Ciccarelli, B Lopez-Biladeau, J M Oatley. Simplified pipelines for genetic engineering of mammalian embryos by CRISPR-Cas9 electroporation. Biology of Reproduction, 2019, 101(1): 177–187
https://doi.org/10.1093/biolre/ioz075
33 Z Namula, M Wittayarat, M Hirata, T Hirano, N T Nguyen, Q A Le, M Fahrudin, F Tanihara, T Otoi. Genome mutation after the introduction of the gene editing by electroporation of Cas9 protein (GEEP) system into bovine putative zygotes. In vitro Cellular & Developmental Biology - Animal, 2019, 55(8): 598–603
https://doi.org/10.1007/s11626-019-00385-w
34 L Teboul, S A Murray, P M Nolan. Phenotyping first-generation genome editing mutants: a new standard? Mammalian Genome, 2017, 28(7–8): 377–382
https://doi.org/10.1007/s00335-017-9711-x
35 A E Young, T A Mansour, B R McNabb, J R Owen, J F Trott, C T Brown, A L Van Eenennaam. Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nature Biotechnology, 2019 [Published Online] doi: 10.1038/s41587-019-0266-0
36 T Kaneko, T Sakuma, T Yamamoto, T Mashimo. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Scientific Reports, 2015, 4(1): 6382
https://doi.org/10.1038/srep06382
37 M Hashimoto, Y Yamashita, T Takemoto. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Developmental Biology, 2016, 418(1): 1–9
https://doi.org/10.1016/j.ydbio.2016.07.017
38 N Hustedt, D Durocher. The control of DNA repair by the cell cycle. Nature Cell Biology, 2017, 19(1): 1–9
https://doi.org/10.1038/ncb3452
39 J Laurinčík, P Hyttel, V Baran, J Eckert, A Lucas-Hahn, J Pivko, H Niemann, G Brem, K Schellander. A detailed analysis of pronucleus development in bovine zygotes in vitro: cell-cycle chronology and ultrastructure. Molecular Reproduction and Development, 1998, 50(2): 192–199
https://doi.org/10.1002/(SICI)1098-2795(199806)50:2<192::AID-MRD10>3.0.CO;2-9
40 H Ma, N Marti-Gutierrez, S W Park, J Wu, Y Lee, K Suzuki, A Koski, D Ji, T Hayama, R Ahmed, H Darby, C Van Dyken, Y Li, E Kang, A R Park, D Kim, S T Kim, J H Gong, Y Gu, X Xu, D Battaglia, S A Krieg, D M Lee, D H Wu, D P Wolf, S B Heitner, J C I Belmonte, P Amato, J S Kim, S Kaul, S Mitalipov. Correction of a pathogenic gene mutation in human embryos. Nature, 2017, 548(7668): 413–419
https://doi.org/10.1038/nature23305
41 S Riesenberg, M Chintalapati, D Macak, P Kanis, T Maricic, S Pääbo. Simultaneous precise editing of multiple genes in human cells. Nucleic Acids Research, 2019, 47(19): e116
https://doi.org/10.1093/nar/gkz669
42 J J Wilde, T Aida, M Wienisch, Q G Zhang, P M Qi, G P Feng. Efficient zygotic genome editing via RAD51-enhanced interhomolog repair. bioRxiv, 2018 [Preprint] doi: 10.1101/263699
43 J Song, D S Yang, J Xu, T Q Zhu, Y E Chen, J F Zhang. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications, 2016, 7(1): 10548
https://doi.org/10.1038/ncomms10548
44 T Gutschner, M Haemmerle, G Genovese, G F Draetta, L Chin. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Reports, 2016, 14(6): 1555–1566
https://doi.org/10.1016/j.celrep.2016.01.019
45 S E Howden, B McColl, A Glaser, J Vadolas, S Petrou, M H Little, A G Elefanty, E G A Stanley. Cas9 variant for efficient generation of indel-free knockin or gene-corrected human pluripotent stem cells. Stem Cell Reports, 2016, 7(3): 508–517
https://doi.org/10.1016/j.stemcr.2016.07.001
46 B Gu, E Posfai, J Rossant. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nature Biotechnology, 2018, 36(7): 632–637
https://doi.org/10.1038/nbt.4166
47 M Ma, F F Zhuang, X B Hu, B L Wang, X Z Wen, J F Ji, J J Xi. Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Research, 2017, 27(4): 578–581
https://doi.org/10.1038/cr.2017.29
48 E J Aird, K N Lovendahl, A S St. Martin, R S Harris, W R Gordon. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Communications Biology, 2018, 1(1): 54
https://doi.org/10.1038/s42003-018-0054-2
49 R M Quadros, H Miura, D W Harms, H Akatsuka, T Sato, T Aida, R Redder, G P Richardson, Y Inagaki, D Sakai, S M Buckley, P Seshacharyulu, S K Batra, M A Behlke, S A Zeiner, A M Jacobi, Y Izu, W B Thoreson, L D Urness, S L Mansour, M Ohtsuka, C B Gurumurthy. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biology, 2017, 18(1): 92
https://doi.org/10.1186/s13059-017-1220-4
50 T Gaj, B E Epstein, D V Schaffer. Genome engineering using adeno-associated virus: basic and clinical research applications. Molecular Therapy, 2016, 24(3): 458–464
https://doi.org/10.1038/mt.2015.151
51 S Nakade, T Tsubota, Y Sakane, S Kume, N Sakamoto, M Obara, T Daimon, H Sezutsu, T Yamamoto, T Sakuma, K T Suzuki. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nature Communications, 2014, 5(1): 5560
https://doi.org/10.1038/ncomms6560
52 X Yao, X Wang, X D Hu, Z Liu, J L Liu, H B Zhou, X W Shen, Y Wei, Z J Huang, W Q Ying, Y Wang, Y H Nie, C C Zhang, S L Li, L P Cheng, Q F Wang, Y Wu, P Y Huang, Q Sun, L Y Shi, H Yang. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Research, 2017, 27(6): 801–814
https://doi.org/10.1038/cr.2017.76
53 K Suzuki, Y Tsunekawa, R Hernandez-Benitez, J Wu, J Zhu, E J Kim, F Hatanaka, M Yamamoto, T Araoka, Z Li, M Kurita, T Hishida, M Li, E Aizawa, S C Guo, S Chen, A Goebl, R D Soligalla, J Qu, T S Jiang, X Fu, M Jafari, C R Esteban, W T Berggren, J Lajara, E Nuñez-Delicado, P Guillen, J M Campistol, F Matsuzaki, G H Liu, P Magistretti, K Zhang, E M Callaway, K Zhang, J C I Belmonte. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016, 540(7631): 144–149
https://doi.org/10.1038/nature20565
54 X Liu, Y Z Wang, Y P Gao, J M Su, J C Zhang, X P Xing, C Zhou, K Z Yao, Q An, Y Zhang. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development, 2018, 145(4): dev158261
https://doi.org/10.1242/dev.158261
55 P Holm, N N Shukri, G Vajta, P Booth, C Bendixen, H Callesen. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology, 1998, 50(8): 1285–1299
https://doi.org/10.1016/S0093-691X(98)00227-1
56 C Wrenzycki. In vitro Production of (Farm) Animal Embryos. In: Niemann H, Wrenzycki C, eds. Animal Biotechnology 1: Reproductive Biotechnologies. Cham: Springer, 2018, 269–304
57 C E M Aiken, P P L Swoboda, J N Skepper, M H Johnson. The direct measurement of embryogenic volume and nucleo-cytoplasmic ratio during mouse pre-implantation development. Reproduction, 2004, 128(5): 527–535
https://doi.org/10.1530/rep.1.00281
58 S M Willadsen, C Polge. Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Veterinary Record, 1981, 108(10): 211–213
https://doi.org/10.1136/vr.108.10.211
59 Z C Tu, W L Yang, S Yan, A Yin, J Q Gao, X D Liu, Y H Zheng, J Z Zheng, Z J Li, S H Yang, S H Li, X Y Guo, X J Li. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Scientific Reports, 2017, 7(1): 42081
https://doi.org/10.1038/srep42081
60 P J Fisher, D L Hyndman, M J Bixley, F C Oback, L Popovic, L T McGowan, M C Berg, D N Wells. Brief communication: potential for genomic selection of bovine embryos. Proceedings of the New Zealand Society of Animal Production, 2012, 72: 156–158
61 F C Oback, J Wei, L Popovic, L T McGowan, J E Oliver, S R Delaney, D N Wells. Blastocyst bisection to multiply biopsied and vitrified bovine embryos. Reproduction, Fertility, and Development, 2016, 29(1): 154
https://doi.org/10.1071/RDv29n1Ab93
62 M J Evans, M H Kaufman. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819): 154–156
https://doi.org/10.1038/292154a0
63 G R Martin. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(12): 7634–7638
https://doi.org/10.1073/pnas.78.12.7634
64 M R Capecchi. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews. Genetics, 2005, 6(6): 507–512
https://doi.org/10.1038/nrg1619
65 C Mulas, T Kalkan, F von Meyenn, H G Leitch, J Nichols, A Smith. Defined conditions for propagation and manipulation of mouse embryonic stem cells. Development, 2019, 146(6): dev173146
https://doi.org/10.1242/dev.173146
66 A Nagy, J Rossant, R Nagy, W Abramow-Newerly, J C Roder. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(18): 8424–8428
https://doi.org/10.1073/pnas.90.18.8424
67 J Nichols, A Smith. Naïve and primed pluripotent states. Cell Stem Cell, 2009, 4(6): 487–492
https://doi.org/10.1016/j.stem.2009.05.015
68 Y Suda, M Suzuki, Y Ikawa, S Aizawa. Mouse embryonic stem cells exhibit indefinite proliferative potential. Journal of Cellular Physiology, 1987, 133(1): 197–201
https://doi.org/10.1002/jcp.1041330127
69 B Oback, B Huang. Pluripotent Stem Cells in Livestock, in Stem Cells: From Basic Research to Therapy. In: Calegari F, Waskow C, eds. Stem Cells: From Basic Research to Therapy, Volume 2: Tissue Homeostasis and Regeneration during Adulthood, Applications, Legislation and Ethics. New York: CRC Press/Taylor & Francis Group, 2014, 305–346
70 X F Gao, M Nowak-Imialek, X Chen, D S Chen, D Herrmann, D Ruan, A C H Chen, M A E Eckersley-Maslin, S Ahmad, Y L Lee, T Kobayashi, D Ryan, J X Zhong, J C Zhu, J Wu, G C Lan, S Petkov, J Yang, L Antunes, L S Campos, B Y Fu, S P Wang, Y Yong, X M Wang, S G Xue, L P Ge, Z H Liu, Y Huang, T Nie, P Li, D H Wu, D Q Pei, Y Zhang, L M Lu, F T Yang, S J Kimber, W Reik, X G Zou, Z C Shang, L X Lai, A Surani, P P L Tam, A Ahmed, W S B Yeung, S A Teichmann, H Niemann, P Liu. Establishment of porcine and human expanded potential stem cells. Nature Cell Biology, 2019, 21(6): 687–699
https://doi.org/10.1038/s41556-019-0333-2
71 Y S Bogliotti, J Wu, M Vilarino, D Okamura, D A Soto, C Q Zhong, M Sakurai, R V Sampaio, K Suzuki, J C I Izpisua Belmonte, P J Ross. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2090–2095
https://doi.org/10.1073/pnas.1716161115
72 C Buecker, H H Chen, J M Polo, L Daheron, L Bu, T S Barakat, P Okwieka, A Porter, J Gribnau, K Hochedlinger, N Geijsen. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell, 2010, 6(6): 535–546
https://doi.org/10.1016/j.stem.2010.05.003
73 D Hockemeyer, F Soldner, C Beard, Q Gao, M Mitalipova, R C DeKelver, G E Katibah, R Amora, E A Boydston, B Zeitler, X Meng, J C Miller, L Zhang, E J Rebar, P D Gregory, F D Urnov, R Jaenisch. Highly efficient gene targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 2009, 27(9): 851–857
https://doi.org/10.1038/nbt.1562
74 D Hockemeyer, H Y Wang, S Kiani, C S Lai, Q Gao, J P Cassady, G J Cost, L Zhang, Y Santiago, J C Miller, B Zeitler, J M Cherone, X D Meng, S J Hinkley, E J Rebar, P D Gregory, F D Urnov, R Jaenisch. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 2011, 29(8): 731–734
https://doi.org/10.1038/nbt.1927
75 D Hockemeyer, R Jaenisch. Induced pluripotent stem cells meet genome editing. Cell Stem Cell, 2016, 18(5): 573–586
https://doi.org/10.1016/j.stem.2016.04.013
76 Y Heyman, P Chavatte-Palmer, D LeBourhis, S Camous, X Vignon, J P Renard. Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biology of Reproduction, 2002, 66(1): 6–13
https://doi.org/10.1095/biolreprod66.1.6
77 P M Misica-Turner, F C Oback, M Eichenlaub, D N Wells, B Oback. Aggregating embryonic but not somatic nuclear transfer embryos increases cloning efficiency in cattle. Biology of Reproduction, 2007, 76(2): 268–278
https://doi.org/10.1095/biolreprod.106.050922
78 B Oback. Cloning from stem cells: different lineages, different species, same story. Reproduction, Fertility, and Development, 2009, 21(1): 83–94
https://doi.org/10.1071/RD08212
79 K Eggan, A Rode, I Jentsch, C Samuel, T Hennek, H Tintrup, B Zevnik, J Erwin, J Loring, L Jackson-Grusby, M R Speicher, R Kuehn, R Jaenisch. Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nature Biotechnology, 2002, 20(5): 455–459
https://doi.org/10.1038/nbt0502-455
80 D Humpherys, K Eggan, H Akutsu, K Hochedlinger, W M Rideout 3rd, D Biniszkiewicz, R Yanagimachi, R Jaenisch. Epigenetic instability in ES cells and cloned mice. Science, 2001, 293(5527): 95–97
https://doi.org/10.1126/science.1061402
81 A Ideta, S Yamashita, M Seki-Soma, R Yamaguchi, S Chiba, H Komaki, T Ito, M Konishi, Y Aoyagi, Y Sendai. Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle. Scientific Reports, 2016, 6(1): 24983
https://doi.org/10.1038/srep24983
82 M Tsuda, Y Sasaoka, M Kiso, K Abe, S Haraguchi, S Kobayashi, Y Saga. Conserved role of nanos proteins in germ cell development. Science, 2003, 301(5637): 1239–1241
https://doi.org/10.1126/science.1085222
83 M Ruggiu, R Speed, M Taggart, S J McKay, F Kilanowski, P Saunders, J Dorin, H J Cooke. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature, 1997, 389(6646): 73–77
https://doi.org/10.1038/37987
84 K E Park, A V Kaucher, A Powell, M S Waqas, S E S Sandmaier, M J Oatley, C H Park, A Tibary, D M Donovan, L A Blomberg, S G Lillico, C B A Whitelaw, A Mileham, B P Telugu, J M Oatley. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Scientific Reports, 2017, 7(1): 40176
https://doi.org/10.1038/srep40176
85 Z McLean, S J Appleby, J W Wei, R G Snell, B Oback. Testes of DAZL null sheep lack spermatogonia and maintain normal somatic cells. bioRxiv, 2019 [Preprint] doi: 10.1101/848036
86 M I Giassetti, M Ciccarelli, J M Oatley. Spermatogonial stem cell transplantation: insights and outlook for domestic animals. Annual Review of Animal Biosciences, 2019, 7(1): 385–401
https://doi.org/10.1146/annurev-animal-020518-115239
87 C B Fehilly, S M Willadsen, E M Tucker. Experimental chimaerism in sheep. Journal of Reproduction and Fertility, 1984, 70(1): 347–351
https://doi.org/10.1530/jrf.0.0700347
88 L Picard, I Chartrain, W A King, K J Betteridge. Production of chimaeric bovine embryos and calves by aggregation of inner cell masses with morulae. Molecular Reproduction and Development, 1990, 27(4): 295–304
https://doi.org/10.1002/mrd.1080270404
89 G Brem, H Tenhumberg, H Krausslich. Chimerism in cattle through microsurgical aggregation of morulae. Theriogenology, 1984, 22(5): 609–613
https://doi.org/10.1016/0093-691X(84)90061-X
90 K Nakano, M Watanabe, H Matsunari, T Matsuda, K Honda, M Maehara, T Kanai, G Hayashida, M Kobayashi, M Kuramoto, Y Arai, K Umeyama, S H Fujishiro, Y Mizukami, M Nagaya, Y Hanazono, H Nagashima. Generating porcine chimeras using inner cell mass cells and parthenogenetic preimplantation embryos. PLoS One, 2013, 8(4): e61900
https://doi.org/10.1371/journal.pone.0061900
91 A Onishi, K Takeda, M Komatsu, T Akita, T Kojima. Production of chimeric pigs and the analysis of chimerism using mitochondrial deoxyribonucleic acid as a cell marker. Biology of Reproduction, 1994, 51(6): 1069–1075
https://doi.org/10.1095/biolreprod51.6.1069
92 K Hayashi. In vitro reconstitution of germ cell development. Biology of Reproduction, 2019, 101(3): 567–578
https://doi.org/10.1093/biolre/ioz111
93 C S Haley, P M Visscher. Strategies to utilize marker-quantitative trait loci associations. Journal of Dairy Science, 1998, 81(Supplement 2): 85–97
https://doi.org/10.3168/jds.S0022-0302(98)70157-2
94 S Friedrichs, Y Takasu, P Kearns, B Dagallier, R Oshima, J Schofield, C Moreddu. An overview of regulatory approaches to genome editing in agriculture. Biotechnology Research and Innovation, 2019, 3(2): 208–220
https://doi.org/10.1016/j.biori.2019.07.001
95 H Ledford. CRISPR conundrum: Strict European court ruling leaves food-testing labs without a plan. Nature, 2019, 572(7767): 15
https://doi.org/10.1038/d41586-019-02162-x
96 Food and Drug Administration (FDA). Guidance for industry #187: regulation of intentionally altered genomic DNA in animals. Available at the FDA website on September 21, 2019
97 M A Lema. Regulatory aspects of gene editing in Argentina. Transgenic Research, 2019, 28(Supplement 2): 147–150
https://doi.org/10.1007/s11248-019-00145-2
98 P Thygesen. Clarifying the regulation of genome editing in Australia: situation for genetically modified organisms. Transgenic Research, 2019, 28(Supplement 2): 151–159
https://doi.org/10.1007/s11248-019-00151-4
99 K W Ellens, D Levac, C Pearson, A Savoie, N Strand, J Louter, C Tibelius. Canadian regulatory aspects of gene editing technologies. Transgenic Research, 2019, 28(2): 165–168
https://doi.org/10.1007/s11248-019-00153-2
100 D N Wells, B Oback, G Laible. Cloning livestock: a return to embryonic cells. Trends in Biotechnology, 2003, 21(10): 428–432
https://doi.org/10.1016/S0167-7799(03)00206-3
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn