Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  学科浏览  |  专题文章  |  热点文章  |  下载排行
Frontiers of Agricultural Science and Engineering    2019, Vol. 6 Issue (2) : 97-104     https://doi.org/10.15302/J-FASE-2018248
REVIEW
Regulation of NLR stability in plant immunity
Tao WANG1, Jiaxin LI2, Qian-Hua SHEN1()
1. State Key Laboratory of Plant Cell and Chromosome Engineering/Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
2. Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
全文: PDF(516 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Plant nucleotide binding domain and leucine-rich repeat (NLR) receptors recognize pathogen effectors directly or indirectly and mediate innate immune responses. NLR-mediated immunity also has direct impacts on plant growth and development, as well as yield and survival. The levels of NLR proteins are therefore intricately controlled in plants to balance defense responses and other processes. In recent years, the ubiquitination-26S proteasome system and the HSP90 chaperones have emerged as having key functions in the regulation of NLR stability. The N-end rule pathway of protein degradation is also directly linked to NLR stability. Recent progress in the regulation of NLR stability and turnover is summarized here, focusing on the key components and pathways.

Keywords E3 ubiquitin ligase      degradation      nucleotide-binding leucine-rich repeat receptor      plant immunity      proteasome      protein stability      ubiquitination     
最新录用日期:    在线预览日期:    发布日期: 2019-05-22
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Tao WANG
Jiaxin LI
Qian-Hua SHEN
引用本文:   
Tao WANG,Jiaxin LI,Qian-Hua SHEN. Regulation of NLR stability in plant immunity[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 97-104.
网址:  
https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2018248     OR     https://journal.hep.com.cn/fase/EN/Y2019/V6/I2/97
Fig.1  Major components/pathways in the stability regulation of nucleotide binding domain and leucine-rich repeat receptors (NLRs) in plants. (a) HSP90-SGT1-RAR1 chaperones regulate the folding, maturation and/or activation of NLRs. The NLRs can form homocomplex or heterocomplex to detect strain-specific AVR effectors and to trigger ETI; (b) a hypothetical pathway depicting the regulation of Arabidopsis SNC1 by the E3 Ub-ligase complex SCFCPR1. RPS2 and RPS4 can similarly be regulated (not shown). SGT1, HSP90, and SRPR1 are associated with the SCF complex. MUSE13/14 are two TRAF-domain-containing proteins. The MUSE3 E4 ligase and CDC48A may act downstream of the SCF complex; (c) the RING-type E3 ligases, APIP10 and MIR1, control the stability of rice Piz-t and barley MLA, respectively; (d) Nt-acetylation antagonistically regulates the homeostasis of SNC1. At least two N-terminal isoforms of SNC1 exist in Arabidopsis. The Met-Met-Asp-SNC1 isoform is acetylated (Ac-MMD) by the NatA acetylase complex, which serves as a degron for the destabilization of the protein. The Met-Asp-SNC1 isoform is acetylated (Ac-MD) by the NatB complex, which stabilizes the proteins that may subsequently trigger ETI. Polyubiquitinated NLRs are degraded through the 26S proteasome.
1 J LDangl, D M Horvath, B JStaskawicz. Pivoting the plant immune system from dissection to deployment. Science, 2013, 341(6147): 746–751
https://doi.org/10.1126/science.1236011 pmid: 23950531
2 CZipfel. Plant pattern-recognition receptors. Trends in Immunology, 2014, 35(7): 345–351
https://doi.org/10.1016/j.it.2014.05.004 pmid: 24946686
3 P NDodds, J P Rathjen. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews: Genetics, 2010, 11(8): 539–548
https://doi.org/10.1038/nrg2812 pmid: 20585331
4 J DJones, R EVance, J LDangl. Intracellular innate immune surveillance devices in plants and animals. Science, 2016, 354(6316): aaf6395
https://doi.org/10.1126/science.aaf6395 pmid: 27934708
5 D ECook, C H Mesarich, B PThomma. Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology, 2015, 53(1): 541–563
https://doi.org/10.1146/annurev-phyto-080614-120114 pmid: 26047564
6 KTsuda, F Katagiri. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology, 2010, 13(4): 459–465
https://doi.org/10.1016/j.pbi.2010.04.006 pmid: 20471306
7 KTsuda, AMine, GBethke, D Igarashi, C JBotanga, YTsuda, J Glazebrook, MSato, FKatagiri. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLOS Genetics, 2013, 9(12): e1004015
https://doi.org/10.1371/journal.pgen.1004015 pmid: 24348271
8 FJacob, S Vernaldi, TMaekawa. Evolution and conservation of plant NLR functions. Frontiers in Immunology, 2013, 4: e297
https://doi.org/10.3389/fimmu.2013.00297 pmid: 24093022
9 HCui, KTsuda, J EParker. Effector-triggered immunity: from pathogen perception to robust defense. Annual Review of Phytopathology, 2015, 66(1): 487–511
https://doi.org/10.1146/annurev-arplant-050213-040012 pmid: 25494461
10 EChae, K Bomblies, S TKim, DKarelina, MZaidem, SOssowski, C Martín-Pizarro, R A ELaitinen, B ARowan, H Tenenboim, SLechner, MDemar, A Habring-Müller, CLanz, GRätsch, DWeigel. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell, 2014, 159(6): 1341–1351
https://doi.org/10.1016/j.cell.2014.10.049 pmid: 25467443
11 Y TCheng, YLi, SHuang, Y Huang, XDong, YZhang, XLi. Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35): 14694–14699
https://doi.org/10.1073/pnas.1105685108 pmid: 21873230
12 ERodriguez, H El Ghoul, JMundy, MPetersen. Making sense of plant autoimmunity and ‘negative regulators’. FEBS Journal, 2016, 283(8): 1385–1391
https://doi.org/10.1111/febs.13613 pmid: 26640229
13 Y TCheng, XLi. Ubiquitination in NB-LRR-mediated immunity. Current Opinion in Plant Biology, 2012, 15(4): 392–399
https://doi.org/10.1016/j.pbi.2012.03.014 pmid: 22503756
14 XLi, PKapos, YZhang. NLRs in plants. Current Opinion in Immunology, 2015, 32: 114–121
https://doi.org/10.1016/j.coi.2015.01.014 pmid: 25667191
15 KShirasu. The HSP90-SGT1 chaperone complex for NLR immune sensors. Annual Review of Plant Biology, 2009, 60(1): 139–164
https://doi.org/10.1146/annurev.arplant.59.032607.092906 pmid: 19014346
16 C MPickart, M JEddins. Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta, 2004, 1695(1–3): 55–72
https://doi.org/10.1016/j.bbamcr.2004.09.019 pmid: 15571809
17 JSmalle, R D Vierstra. The ubiquitin 26S proteasome proteolytic pathway. Annual Review of Plant Biology, 2004, 55(1): 555–590
https://doi.org/10.1146/annurev.arplant.55.031903.141801 pmid: 15377232
18 R DVierstra. The ubiquitin-26S proteasome system at the nexus of plant biology. Nature Reviews: Molecular Cell Biology, 2009, 10(6): 385–397
https://doi.org/10.1038/nrm2688 pmid: 19424292
19 THoppe. Multiubiquitylation by E4 enzymes: ‘one size’ doesn’t fit all. Trends in Biochemical Sciences, 2005, 30(4): 183–187
https://doi.org/10.1016/j.tibs.2005.02.004 pmid: 15817394
20 MTrujillo. News from the PUB: plant U-box type E3 ubiquitin ligases. Journal of Experimental Botany, 2018, 69(3): 371–384
https://doi.org/10.1093/jxb/erx411 pmid: 29237060
21 EIsono, A Katsiarimpa, I KMüller, FAnzenberger, Y D Stierhof, NGeldner, JChory, C Schwechheimer. The deubiquitinating enzyme AMSH3 is required for intracellular trafficking and vacuole biogenesis in Arabidopsis thaliana. Plant Cell, 2010, 22(6): 1826–1837
https://doi.org/10.1105/tpc.110.075952 pmid: 20543027
22 AVarshavsky. The N-end rule pathway and regulation by proteolysis. Protein Science, 2011, 20(8): 1298–1345
https://doi.org/10.1002/pro.666 pmid: 21633985
23 AMogk, R Schmidt, BBukau. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends in Cell Biology, 2007, 17(4): 165–172
https://doi.org/10.1016/j.tcb.2007.02.001 pmid: 17306546
24 D JGibbs, S CLee, NMd Isa, S Gramuglia, TFukao, G WBassel, C S Correia, FCorbineau, F LTheodoulou, J Bailey-Serres, M JHoldsworth. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 2011, 479(7373): 415–418
https://doi.org/10.1038/nature10534 pmid: 22020279
25 D JGibbs, MBailey, H MTedds, M J Holdsworth. From start to finish: amino-terminal protein modifications as degradation signals in plants. New Phytologist, 2016, 211(4): 1188–1194
https://doi.org/10.1111/nph.14105 pmid: 27439310
26 ABachmair, DFinley, AVarshavsky. In vivo half-life of a protein is a function of its amino-terminal residue. Science, 1986, 234(4773): 179–186
https://doi.org/10.1126/science.3018930 pmid: 3018930
27 MGou, ZShi, YZhu, Z Bao, GWang, JHua. The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. Plant Journal, 2012, 69(3): 411–420
https://doi.org/10.1111/j.1365-313X.2011.04799.x pmid: 21967323
28 XLi, J DClarke, YZhang, X Dong. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Molecular Plant-Microbe Interactions, 2001, 14(10): 1131–1139
https://doi.org/10.1094/MPMI.2001.14.10.1131 pmid: 11605952
29 TKroj, E Chanclud, CMichel-Romiti, XGrand, J BMorel. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytologist, 2016, 210(2): 618–626
https://doi.org/10.1111/nph.13869 pmid: 26848538
30 O XDong, KAo, FXu, K C M Johnson, YWu, LLi, SXia, YLiu, Y Huang, ERodriguez, XChen, SChen, YZhang, M Petersen, XLi. Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. Nature Plants, 2018, 4(9): 699–710
https://doi.org/10.1038/s41477-018-0216-8 pmid: 30082764
31 WLi, BWang, JWu, GLu, YHu, XZhang, ZZhang, Q Zhao, QFeng, HZhang, ZWang, GWang, B Han, ZWang, BZhou. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-Microbe Interactions, 2009, 22(4): 411–420
https://doi.org/10.1094/MPMI-22-4-0411 pmid: 19271956
32 BZhou, SQu, GLiu, M Dolan, HSakai, GLu, M Bellizzi, G LWang. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2006, 19(11): 1216–1228
https://doi.org/10.1094/MPMI-19-1216 pmid: 17073304
33 C HPark, G Shirsekar, MBellizzi, SChen, P Songkumarn, XXie, XShi, YNing, BZhou, P Suttiviriya, MWang, KUmemura, G LWang. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor piz-t in rice. PLOS Pathogens, 2016, 12(3): e1005529
https://doi.org/10.1371/journal.ppat.1005529 pmid: 27031246
34 C HPark, SChen, GShirsekar, B Zhou, C HKhang, PSongkumarn, A JAfzal, YNing, R Wang, MBellizzi, BValent, G LWang. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 2012, 24(11): 4748–4762
https://doi.org/10.1105/tpc.112.105429 pmid: 23204406
35 SSeeholzer, T Tsuchimatsu, TJordan, SBieri, SPajonk, WYang, A Jahoor, K KShimizu, BKeller, P Schulze-Lefert. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Molecular Plant-Microbe Interactions, 2010, 23(4): 497–509
https://doi.org/10.1094/MPMI-23-4-0497 pmid: 20192836
36 TWang, CChang, CGu, STang, QXie, Q H Shen. An E3 ligase affects the NLR receptor stability and immunity to Powdery Mildew. Plant Physiology, 2016, 172(4): 2504–2515
https://doi.org/10.1104/pp.16.01520 pmid: 27780896
37 Rvan Wersch, XLi, YZhang. Mighty Dwarfs: Arabidopsis autoimmune mutants and their usages in genetic dissection of plant immunity. Frontiers of Plant Science, 2016, 7: 1717
https://doi.org/10.3389/fpls.2016.01717 pmid: 27909443
38 YHuang, S Minaker, CRoth, SHuang, PHieter, VLipka, M Wiermer, XLi. An E4 ligase facilitates polyubiquitination of plant immune receptor resistance proteins in Arabidopsis. Plant Cell, 2014, 26(1): 485–496
https://doi.org/10.1105/tpc.113.119057 pmid: 24449689
39 CCopeland, V Woloshen, YHuang, XLi. AtCDC48A is involved in the turnover of an NLR immune receptor. Plant Journal, 2016, 88(2): 294–305
https://doi.org/10.1111/tpj.13251 pmid: 27340941
40 G HBaek, IKim, HRao. The Cdc48 ATPase modulates the interaction between two proteolytic factors Ufd2 and Rad23. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(33): 13558–13563
https://doi.org/10.1073/pnas.1104051108 pmid: 21807993
41 DBarthelme, J ZChen, JGrabenstatter, T ABaker, R TSauer. Architecture and assembly of the archaeal Cdc48·20S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17): E1687–E1694
https://doi.org/10.1073/pnas.1404823111 pmid: 24711419
42 J YChung, Y CPark, HYe, HWu. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. Journal of Cell Science, 2002, 115(4): 679–688
pmid: 11865024
43 PXie. TRAF molecules in cell signaling and in human diseases. Journal of Molecular Signaling, 2013, 8(1): 7
https://doi.org/10.1186/1750-2187-8-7 pmid: 23758787
44 ROelmüller, T Peškan-Berghöfer, BShahollari, ATrebicka, I Sherameti, AVarma. MATH domain proteins represent a novel protein family in Arabidopsis thaliana, and at least one member is modified in roots during the course of a plant-microbe interaction. Physiologia Plantarum, 2005, 124(2): 152–166
https://doi.org/10.1111/j.1399-3054.2005.00505.x
45 SHuang, XChen, XZhong, M Li, KAo, JHuang, XLi. Plant TRAF proteins regulate NLR immune receptor turnover. Cell Host & Microbe, 2016, 19(2): 204–215
https://doi.org/10.1016/j.chom.2016.01.005 pmid: 26867179
46 JHuang, CZhu, XLi. SCFSNIPER4 controls the turnover of two redundant TRAF proteins in plant immunity. Plant Journal, 2018, 95(3): 504–515
https://doi.org/10.1111/tpj.13965 pmid: 29770510
47 C SHwang, A Shemorry, DAuerbach, AVarshavsky. The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nature Cell Biology, 2010, 12(12): 1177–1185
https://doi.org/10.1038/ncb2121 pmid: 21076411
48 C SHwang, A Shemorry, AVarshavsky. N-terminal acetylation of cellular proteins creates specific degradation signals. Science, 2010, 327(5968): 973–977
https://doi.org/10.1126/science.1183147 pmid: 20110468
49 K ELee, J EHeo, J MKim, C S Hwang. N-terminal acetylation-targeted N-end rule proteolytic system: the Ac/N-end rule pathway. Molecules and Cells, 2016, 39(3): 169–178
https://doi.org/10.14348/molcells.2016.2329 pmid: 26883906
50 TArnesen, P Van Damme, BPolevoda, KHelsens, R Evjenth, NColaert, J EVarhaug, J Vandekerckhove, J RLillehaug, FSherman, K Gevaert. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8157–8162
https://doi.org/10.1073/pnas.0901931106 pmid: 19420222
51 K KStarheim, K Gevaert, TArnesen. Protein N-terminal acetyltransferases: when the start matters. Trends in Biochemical Sciences, 2012, 37(4): 152–161
https://doi.org/10.1016/j.tibs.2012.02.003 pmid: 22405572
52 FXu, YHuang, LLi, PGannon, ELinster, M Huber, PKapos, WBienvenut, B Polevoda, TMeinnel, RHell, C Giglione, YZhang, MWirtz, SChen, XLi. Two N-terminal acetyltransferases antagonistically regulate the stability of a nod-like receptor in Arabidopsis. Plant Cell, 2015, 27(5): 1547–1562
https://doi.org/10.1105/tpc.15.00173 pmid: 25966763
53 L HPearl, C Prodromou. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry, 2006, 75(1): 271–294
https://doi.org/10.1146/annurev.biochem.75.103004.142738 pmid: 16756493
54 YKadota, K Shirasu. The HSP90 complex of plants. Biochimica et Biophysica Acta, 2012, 1823(3): 689–697
https://doi.org/10.1016/j.bbamcr.2011.09.016 pmid: 22001401
55 Gvan Ooijen, GMayr, M MKasiem, M Albrecht, B JCornelissen, F LTakken. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 2008, 59(6): 1383–1397
https://doi.org/10.1093/jxb/ern045 pmid: 18390848
56 RLu, I Malcuit, PMoffett, M TRuiz, JPeart, A JWu, J P Rathjen, ABendahmane, LDay, D C Baulcombe. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO Journal, 2003, 22(21): 5690–5699
https://doi.org/10.1093/emboj/cdg546 pmid: 14592968
57 D AHubert, P Tornero, YBelkhadir, PKrishna, A Takahashi, KShirasu, J LDangl. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO Journal, 2003, 22(21): 5679–5689
https://doi.org/10.1093/emboj/cdg547 pmid: 14592967
58 B FHolt 3rd, Y Belkhadir, J LDangl. Antagonistic control of disease resistance protein stability in the plant immune system. Science, 2005, 309(5736): 929–932
https://doi.org/10.1126/science.1109977 pmid: 15976272
59 MBotër, B Amigues, JPeart, CBreuer, YKadota, CCasais, G Moore, CKleanthous, FOchsenbein, K Shirasu, RGuerois. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell, 2007, 19(11): 3791–3804
https://doi.org/10.1105/tpc.107.050427 pmid: 18032631
60 SBieri, SMauch, Q HShen, J Peart, ADevoto, CCasais, FCeron, SSchulze, H H Steinbiss, KShirasu, PSchulze-Lefert. RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell, 2004, 16(12): 3480–3495
https://doi.org/10.1105/tpc.104.026682 pmid: 15548741
61 PMestre, D C Baulcombe. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell, 2006, 18(2): 491–501
https://doi.org/10.1105/tpc.105.037234 pmid: 16387833
62 CAzevedo, A Sadanandom, KKitagawa, AFreialdenhoven, K Shirasu, PSchulze-Lefert. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science, 2002, 295(5562): 2073–2076
https://doi.org/10.1126/science.1067554 pmid: 11847307
63 YLi, SLi, DBi, Y TCheng, XLi, YZhang. SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity. PLOS Pathogens, 2010, 6(9): e1001111
https://doi.org/10.1371/journal.ppat.1001111 pmid: 20862316
64 KKitagawa, D Skowyra, S JElledge, J WHarper, PHieter. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Molecular Cell, 1999, 4(1): 21–33
https://doi.org/10.1016/S1097-2765(00)80184-7 pmid: 10445024
65 MZhang, M Botër, KLi, YKadota, B Panaretou, CProdromou, KShirasu, L HPearl. Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO Journal, 2008, 27(20): 2789–2798
https://doi.org/10.1038/emboj.2008.190 pmid: 18818696
66 M GCatlett, K BKaplan. Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. Journal of Biological Chemistry, 2006, 281(44): 33739–33748
https://doi.org/10.1074/jbc.M603847200 pmid: 16945921
67 SHuang, J Monaghan, XZhong, LLin, TSun, O XDong, X Li. HSP90s are required for NLR immune receptor accumulation in Arabidopsis. Plant Journal, 2014, 79(3): 427–439
https://doi.org/10.1111/tpj.12573 pmid: 24889324
68 Sde la Fuente van Bentem, J HVossen, K J de Vries, Svan Wees, W ITameling, H LDekker, C Gde Koster, M AHaring, F LTakken, B JCornelissen. Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant Journal, 2005, 43(2): 284–298
https://doi.org/10.1111/j.1365-313X.2005.02450.x pmid: 15998314
69 DBi, K C Johnson, ZZhu, YHuang, FChen, YZhang, X Li. Mutations in an Atypical TIR-NB-LRR-LIM resistance protein confer autoimmunity. Frontiers of Plant Science, 2011, 2: e71
https://doi.org/10.3389/fpls.2011.00071 pmid: 22639607
70 JLiu, HYang, FBao, K Ao, XZhang, YZhang, SYang. IBR5 Modulates temperature-dependent, R protein CHS3-mediated defense responses in Arabidopsis. PLOS Genetics, 2015, 11(10): e1005584
https://doi.org/10.1371/journal.pgen.1005584 pmid: 26451844
71 HYang, YShi, JLiu, L Guo, XZhang, SYang. A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant Journal, 2010, 63(2): 283–296
https://doi.org/10.1111/j.1365-313X.2010.04241.x pmid: 20444230
72 JLee, JNam, H CPark, G Na, KMiura, J BJin, C YYoo, DBaek, D H Kim, J CJeong, DKim, S YLee, D ESalt, T Mengiste, QGong, SMa, H J Bohnert, S SKwak, R ABressan, P M Hasegawa, D JYun. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant Journal, 2007, 49(1): 79–90
https://doi.org/10.1111/j.1365-313X.2006.02947.x pmid: 17163880
73 MGou, QHuang, WQian, Z Zhang, ZJia, JHua. Sumoylation E3 ligase SIZ1 modulates plant immunity partly through the immune receptor gene SNC1 in Arabidopsis. Molecular Plant-Microbe Interactions, 2017, 30(4): 334–342
https://doi.org/10.1094/MPMI-02-17-0041-R pmid: 28409535
74 S HKim, FGao, SBhattacharjee, J AAdiasor, J CNam, WGassmann. The Arabidopsis resistance-like gene SNC1 is activated by mutations in SRFR1 and contributes to resistance to the bacterial effector AvrRps4. PLOS Pathogens, 2010, 6(11): e1001172
https://doi.org/10.1371/journal.ppat.1001172 pmid: 21079790
75 K C MJohnson, JZhao, ZWu, CRoth, VLipka, MWiermer, X Li. The putative kinase substrate MUSE7 negatively impacts the accumulation of NLR proteins. Plant Journal, 2017, 89(6): 1174–1183
https://doi.org/10.1111/tpj.13454 pmid: 28004865
76 RWang, YNing, XShi, F He, CZhang, JFan, NJiang, YZhang, T Zhang, YHu, MBellizzi, G LWang. Immunity to rice blast disease by suppression of effector-triggered necrosis. Current Biology, 2016, 26(18): 2399–2411
https://doi.org/10.1016/j.cub.2016.06.072 pmid: 27641772
77 YNing, RWang, XShi, X Zhou, G LWang. A layered defense strategy mediated by rice E3 ubiquitin ligases against diverse pathogens. Molecular Plant, 2016, 9(8): 1096–1098
https://doi.org/10.1016/j.molp.2016.06.015 pmid: 27381441
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn